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Degradation of ice-rich permafrost is caused by rapid Arctic warming. 
Likely this degradation already has altered the water balance by in-
creasing runo� and �ooding. Instrumental stream�ow records indicate 
a 9.8% increased discharge (1977-2007) for 19 large Arctic rivers in 
Canada and Eurasia [Overeem and Syvitski, 2010]. There is also a shift of 
maximum discharge to earlier in the summer, most likely due to earlier 
snowmelt. 

How do hydrological changes in Arctic river systems,
 a�ect permafrost conditions?

 Modeling of  thermal regimes of rivers and permafrost
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Arctic river discharges have been increasing over the last few decades (1977-2007)

We developed a �rst-order heat budget approach to simulate evolving river �ood water temperature over the sea-
sonal inundation period. Solar radiation, air temperature and wind control the di�erent components of heat ex-
change between the atmosphere and the river water surface. An additional term speci�cally calculates the exchange 
of heat between the river water and the channel bed and subsurface. Then, this river and �ood water temperature is 
coupled to the Control Volume Permafrost Model (CVPM), which models detailed thermal state of shallow perma-
frost.

Permafrost Model Toolbox Codes are available on Github : https://github.com/csdms-contrib/CVPM/tree/v1.1.
 and Overeem et al., 2018; https://github.com/permamodel

 Model Validation for the Kuparuk River in Alaska
We apply the combined model to the Kuparuk river �oodplain and 
delta, a medium-sized river system on the North Slope of Alaska. 
The river basin is in the zone of continuous permafrost and freezes 
over completely, the runo� season starts in early June and continues 
to Late September.  
The map shows the location and elevation of the Kuparuk River �ood-
plain and delta. The top right insert shows permafrost distribution in 
Alaska, and the location of the Kuparuk River watershed (red area). 
Surface elevations were obtained from the ArcticDEM [Porter et al., 
2018], https://www.pgc.umn.edu/data/arcticdem/. 

We selected this river system for model validation because it has a 
long measurement record for discharge (1978 -2017), and 2 years of 
water temperature measurements (2014-2016).
These lower panels show the location of USGS hydrologic station 
15896000 and the river cross section PP’ used in our simulations .  

Photo courtesy Jason Baker from USGS ( June 12, 2013).

River temperature model cap-
tures the oberved seasonal 
temperature evolution of the 
Kuparuk River (R2 = 0.81).

Permafrost model captures  
seasonal subsurface tem-
perature evolution of a soil 
pro�le in comparison to ob-
servations at monitored soil 
pro�le in Deadhorse 
(approximately 20km from 
our study site). 
(R2 = 0.96)

Permafrost Patterns Vary Across Channels and Floodplain
 depending on Flood Duration & Sediment Properties
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A shift in timing of river �ooding rapidly deepens
seasonal active layer in �oodplains
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Active channel bed of Kuparuk river  Vegetated �oodplain, Kuparuk river
Photos courtesy Josh Koch USGS ( June 12, 2013).

The importance of sedimentary characteristics 
of channelbed and �oodplain deposits

To account for varying �oodplain stratigraphy we simu-
lated thermal state in the �oodplain with deposits set as 
end-members of  “coarse sand and gravel”, versus “sand 
and gravel deposits with a top peat layer of 30 cm”. 
Coarse sand -dominated pro�les respond much more 
quickly to thermal input due to river inundation. With 
standing water, ALT in  a sand/gravel riverbed increases 
from 310 cm to 406 cm. Whereas in the pro�le with a 30 
cm peat and organic matter rich top layer, ALT  is only 48 
cm, remarkably close to the region-wide ALT estimations 
in Kuparuk River Basin. Under �ooding, the active layer 
underlying such a peat-capped pro�le increases to 109 
cm. 
Such di�erent thaw bulbs responses to river inundation 
in the bare sand and gravel-dominated channel beds 
and organic-capped �oodplain or stream pro�les were 
clearly distinguished by the ground penetrating radar 
measurements. Due to the relatively higher thermal con-
ductivity, permafrost underlying the coarse-grained de-
posits is more sensitive to river inundation, whereas peat 
layers in �oodplains provide an insulating e�ect to warm 
�oodwater e�ects due to its lower thermal conductivity.

Variability in inundation determines thermal pro�le

Simulations investigate the permafrost thermal state for 
a river cross section close to USGS station 15896000. The 
river cross section includes two main river channels and 
�oodplain with chute channels in between. Based on the 
2 m high-resolution Arctic DEM, inundation over this 
pro�le is determined from observed river stage.

Low-lying river stream channels have long �ow dura-
tions, while basically only the spring snowmelt �ood and 
one larger storm submerge the intermediate  �oodplain. 
We simplify and assume the water temperature is homo-
geneous across the river cross section. Compared with 
the outer �oodplain, the river channels had much higher 
mean annual ground temperature (MAGT). MAGT also 
increased from the channel edges to the middle of the 
river. As a consequence, the active layer beneath the riv-
erbed can reach about 400 cm, which is about 120 cm 
deeper than the places without river inundation (280 
cm). The increase of ALT in the �oodplain under a short 
duration spring �ood can be ~20 cm.

Permafrost thermal state along a river cross section ( all conditions are set for 2015). 
(a) X-section through the �oodplain from ARCTICDEM; (b) Inundation occurrences over the spring-
sumer and early fall; (c) Simulated mean annual ground temperature MAGT; (d) Simulated active 
layer thickness ALT.  Note the thaw bulbs under the most active channels and di�erences in active 
layer depths in small chute channels.

Inundation timing and discharge can be assessed-
based on the longterm hydrological observations, 
as well as the satellite-based water bodies dynam-
ics in the downstream stretch of the Kuparuk 
River. 

On average, river inundation started on 25 May 
(DOY 144±7), and ended on 7 November (DOY 
310±14) over 1978-2017. Inundation onset in the 
21st century became earlier (4.68 days decade-1) 
although no statistically signi�cant change since 
1978 is found due to large variability, which is 
typical in Arctic river systems. The runo� season 
ended later with a rate of 6.06 days decade-1.  
Thus, inundation duration became longer at a rate 
of 6.45 days decade-1.

Experiments run the same discharge at varying 
timing. The simulations show the profound 
impact of earlier �ood arrival, resulting in signi�-
cant warming and active layer deepening. This is 
especially true for early arrival of the freshet, less 
impactful for a lengthening of the season.

 

Energy Balance Model for the River Temperature Model

Hw  = Net heat change         Hsr = Net solar radiation  Hlr = Net longwave radiation
Hl = Latent heat �ux             Hsc = Surface convective heat Hb = Riverbed heat �ux

Time-varying 
river stage (Hw)

How does river �ooding a�ects permafrost thermal state in �oodplains and deltas? 

How is permafrost a�ected by the timing of river �ooding changes with Arctic warming?


