
Creating Shareable Models

By: Eric Hutton

CSDMS is the Community Surface Dynamics
Modeling System

(pronounced ˈsɪstәms)

Image by Flickr user Let There Be More Light

A model can more easily be used by others if it is
readable and has an API

Readable

Application Programming Interface (API)

Someone new to your code should be able to give it
a quick read and know what’s going on.

The interface will allow someone to use it without
worrying about implementation details.

But before all that though, choose a license and a
language

The GNU General Public License is a good choice.

But there lots more. For example,
MIT
Apache
LGPL

GPLv3
OSL

As far as languages, C is a good choice.

Writing readable code mostly means sticking to a
standard

The code should speak for itself. That doesn’t just
mean adding more comments.

Super simple things help:

Spaces instead of tabs
Useful variable names – especially for global
variables and function names
Underscores in names – water_density is better
than iCantReadThis

In the end though, just be consistent.

Makefiles and configure scripts help to make code
portable

Software distributions on UNIX are usually compiled with,

> ./configure

> make

Creates a make file
specific to your system

Compiles the code

Easy, right? Well… the magic that goes on behind the
scenes to make this tick is complicated.

Uses “programming languages” such as: automake,
autoconf, m4, make, sh

A better alternative to configure/make is cmake

Cmake is free, open-source software that replaces
autotools/make.

•  Simple syntax
•  Much easier to learn than autotools
•  Supports nearly every Unix, Windows, Mac OSX
•  Features a testing framework
•  Features a packaging framework
•  am2cmake script to convert automake files

Random compile tip:
compile with –Wall compile flag and pay attention
to the warnings.

If your code comes with documentation, it is more
likely to be used by others

There are tools that
help with this

javadoc (Java)

doctest (Python)

Doxygen
(C, C++, Java, Python, Fortran,

and kinda/sorta Matlab)

These all generate documentation from comments
within your code.

For example, a C function can be documented
directly above it’s definition/declaration.

/** Calculate the area of a circle.	

@param r Radius of the circle	

@returns The circle’s area	
*/	
double area_of_circle (double r);	

This is similar to annotations in Java. We’ll come back
to this later.

It would be nice if there existed a set of standard
annotations for our modeling community.

Some examples of annotation that would be useful to
someone wanting to use your model:

•  @initialize, @run, @finalize

•  @author, @keyword, @version

•  @in, @out, @unit

Your source code could then be parsed for these
annotations.
Since they are ignored by the compiler, they inject very
little of the framework into your code.

Annotations could be used to describe three
categories of meta data (this list comes from OMS)

Component

@description
@author
@bibliography
@status
@version
@source
@keywords
@label

Field

@description
@unit
@in
@out
@range
@role
@bound
@label

Method

@run
@initialize
@finalize

Others?

Example annotation for a component that
calculates the area of a circle

@description(“Circle computation”)	
@author(“me”)	
Public class CircleArea {	
 @description(“Radius”)	
 @range(min=0)	
 @in public double r;	
 @out public double area;	

 @run	
 public void runme() {	
 area = Math.PI * r * r;	
 }	
}	

Our models are difficult to couple because of
implementation details

Some reasons that models are difficult to link or
share:

Languages
Time steps
Numerical schemes
Complexity

These are all implementation details. The user
shouldn’t have to worry about these details.

Design an interface!

A modeling interface hides implementation details
from the application developer

Lots of crazy,
hard-to-

understand code

A coastal evolution model, say You

A Blue Box

A modeling interface hides implementation details
from the application developer

A coastal evolution model, say You
That’s more
like it

For our models a useful interface is IRF

I is for Initialize

R is for Run

F is for Finalize

int	
main()	
{	
 initialize_stuff();	
 run_until_stop_time();	
 print_output();	
 return SUCCESS;	
}	

When designing interfaces it is often easiest to
start at the end

Setup the model run

Run the model for 25 years

Get the water depths

Run the model for an
additional 75 years and
get water depths

Do whatever needs to be
done before quitting

int	
main()	
{	

cem_state *s = cem_init (); 
double *d0, *d1;	

cem_run_until (s, 25.); 
d0 = cem_get_water_depth (s);	

cem_run_until (s, 25.); 
d1 = cem_get_water_depth (s);	

cem_finalize (s); 
return EXIT_SUCCESS;	

}	

The initialize step sets up a new model run
(instance)

Things that might be done within the initialize method:

Create a new state for the model

Allocate memory

Set initial conditions

Pretty much anything that is done before the time
looping begins

The initialize step shouldn’t interfere with another
program’s initialize step

Things that probably shouldn’t be done within the initialize
method:

•  Gather input from the command line (argc, argv)
•  Most any user interface
•  Anything that might interfere with another component

The finalize step destroys an existing model run
(instance)

Things that might be done within the finalize method:

Free resources

Close files

Print final output

Pretty much anything that is done after the time
looping ends

The run step advances the current state of the
model forward in time

The run method advances the model from its
current state to a future state.

run_until(t1);  run_until(t2); 

t1 t2

Oftentimes it is useful to create a data type that
holds the current state of the model

This is the hard part.

Identify all of the variables that need to be remembered
to advance the model forward in time.

Collect these variables (I generally wrap them in a
struct or class). I suppose a common block or a set of
global variables would do.

This data structure can then be passed to the various
methods of the API.

Getters and setters are used to interact with the
model’s state

The state structure should be opaque to the user – that
is implementation stuff

Instead, use get and set functions. For instance,
get_water_depth(); 

set_input_file(“input”); 

It is up to the API designer to decide what variables are
allowed to be get/set.

Refactoring your code in this way should not
change model output

…unless you find (and fix) a bug.

To make sure that you don’t add bugs when refactoring,

Make lots of tests

Run these tests often

Keep in mind that output may not be byte-for-byte
comparable to your benchmarks

In conclusion, there are really only two “rules”

Questions?

Write code that someone else can understand. Pick
a standard and stick to it.

Create an API.
Leave implementation details to the experts.
Worry about your own model.

