
Creating and Linking Components

in ESMF and CCA

Eric Hutton

Cyberinformatics and numerics working group

February 2008

CSDMS

My experiences creating and linking components from

existing code

CCA
Common Component Architecture

Create component:

sedflux

Create component:

sedflux

River

Plume

Subsidence

Create an ESMF application Link components to create an

application

CSDMS

A component is an encapsulated “object” defined by its

public interfaces

Component InterfaceInterface

CSDMS

sedflux links process models to build stratigraphy on

continental margins

CSDMS

To become an ESMF component, the sedflux

programming interface was refactored

Like many models, sedflux is called from the command line,

sedfluxInput files Output files

Create a sedflux library that contains a programming interface:

sedflux_init():
anything done before time stepping

(allocate resources, open files, etc.)

sedflux_run(): advance the model one time step

sedflux_destroy(): anything done after time stepping

CSDMS

The first difficulty was that sedflux is written in c and

ESMF in FORTRAN

Details in communicating between c and FORTRAN can be both platform

and compiler specific.

Difficulties calling c from FORTRAN (or vice versa) include:

Name mangling: Foo() becomes foo_, or FOO, or FOO_, or …

Arrays: FORTRAN arrays are not simply pointers

Unsupported features: Complex numbers, pointers, structs

CSDMS

The second difficulty was that sedflux is not grid based in

the same way the ESMF is

sedflux thinks of the world as cubes of sediment stacked on top of one

another to form columns.

ESMF likes uniform grids of variables.

To get around this, sedflux kept track of its own state through global

variables.

CSDMS

To get around this, sedflux kept track of its own state

through global variables

ESMF application

sedflux

sedflux

state

struct
foo

Init components

Destroy components

Run component:

sedflux

Run component:

foo

For another component to interact with sedflux it needs to know about this

state variable. Imposes sedflux’s implementation.

Not Good

CSDMS

In CCA, interfaces (or ports) define a component

A port is not an implementation only a description. The description is

written in either SIDL (Scientific Interface Definition Language) or XML.

interface deflectionPort extends gov.cca.Port
{
 // Set constants from a file.
 int init(in string file);

 // Get the deflection (in meters) due to the applied loads.
 int get_deflection_in_m(inout rarray<double,1> dz(len) ,
 in rarray<double,1> x(len) ,
 in rarray<double,1> load(len) ,
 in int len);
}

A subsidence component could have a deflectionPort

CSDMS

Driver

uses

A CCA component can both use and provide data through

a port

provides

sedflux

uses

provides

River

Uses river dynamics to drive

plume model

Provides a handle to the

sedflux environment

CSDMS

Smaller models provide another level of granularity

Subsidence
get_deflection_in_m()

set_params()

Hyperpycnal

Plume

get_deposit_in_m()

get_deposit_mass()

run_plume()

Plume

get_deposit_in_m()

get_deposit_mass()

run_plume()

ComponentPort

CSDMS

Give load grid to subsidence

Get back a deflection grid

provides

Convert

uses

Get a sedflux handle and convert to load grid

Change elevations in sedflux

Adding a subsidence model to sedflux requires a

converter component

sedflux

uses

Uses a sedflux

handle

Provides a deflection

grid

provides

Subsidence

CSDMS

In CCA, components are connected using ccafe

ccafe can be run in gui mode (needs some work):

or on the command line:

> connect Driver deflectionPort Subside deflectionPort

CSDMS

In conclusion, CCA offers more flexibility while ESMF

more infrastructure

Questions?

But ESMF could be incorporated into CCA as a toolkit

CCA is more flexible

Language neutral

Does not impose a framework

ESMF comes with a large amount of infrastructure

Grid manipulation

Timers States

Decomposition elements

