

Human Dimensions & DGVMs

Almut Arneth, IMK-IFU, Division of Ecosystem Atmosphere Interactions

LUC: huge uncertainty in historical C-budget

e.g., definition of LUC, process-representation, LUC hindcasts, model tools applied

Units of GtC	1750-2014	1850-2005	1870-2014	1870-2015
Emissions				
Fossil fuel combustion and cement production (E _{FF})	405 ± 20	320 ± 15	400 ± 20	410 ± 20*
Land-use change emissions (E _{LUC})	190 ± 65	150 ± 55	145 ± 50	145 ± 50*
Total emissions	590 ± 70	470 ± 55	545 ± 55	5 55 ± 55*
Partitioning			7	
Atmospheric growth rate (G _{ATM})	255 ± 5	195 ± 5	230 ± 5	
Dcean sink (S _{OCEAN})	170 ± 20	160 ± 20	155 ± 20	
tesidual terrestrial sink (S _{LAND})	165 ± 70	11 5 ± 60	160 ± 60	

- Residual C sink?
- Future? Land-based mitigation vs. food vs. other ecosystem processes and services?

A DGVM

Current developments

- C:N coupling in natural vegetation, pastures and crops
- Gross transitions (e.g., shifting cultivation)
- Crop management: harvest, fertiliser, tillage, irrigation, multi-cropping....
- Forest management (clear-felling, selective logging, planted PFTs

I removed this Figure, since not yet submitted/published. If interested to discuss the work, please contact me directly.

Land management: substantially larger historical *F*_{LULCC} (double?)

→ Must balance the generally well constrained C-budget: $F_{RL} = E_{Anth} + F_{LULCC} - (Gr_{Atm} - U_{ocean})$

 \rightarrow Much larger residual sink. Can we fit this into our process understanding?

 \rightarrow Implications for reforestation potential (and land management)

From a yield perspective

Coupled CN dynamics in modelled crops improve yield response to enhanced CO₂

N is essential for getting yields correct (now, that's a surprise...)

But: needs gridded information on fertiliser amount (minimum: annual totals) – and type (mineral vs. manure)

Forest management

Even forest age is an important factor for Cfluxes \rightarrow species, rotation length, clear-cut vs. selective logging etc. ? 1) The "how to" of LUC in DGVMs still poorly understood

2) Requires information beyond crop area changes

 Forest and pasture area and management – should become a focus of LU models – need foresters and pastoralists as (globally operating) agents, not "only" farmers

Arneth et al., Nature CC, 2014

Peter Anthoni, IMK-IFU Anita Bayer, IMK-IFU Andy Krause, IMK-IFU Mats Lindeskog, U Lund Stefan Olin, U Lund Tom Pugh, IMK-IFU

Etc!

