

 > 50% of land in crops or pasture

- > 50% of land in crops or pasture
- > 50% of forests cleared; more reforested

- Humans plusagro-biomass>3 billion tons
- More than all other vertebrates combined (land and sea)

Coastlines engineered

- Coastlines engineered
- > 50% of fresh water used and 6x more water stored

- Coastlines engineered
- > 50% of fresh water used and 6x more water stored
- More N cycled

- Coastlines engineered
- > 50% of fresh water used and 6x more water stored
- More N cycled
- More sediment transported

 Humanity is more than a global keystone species

Ruddiman et al 2016

Ruddiman et al 2016

- Humanity is more than a global keystone species
- Our planetary
 environment shaped by
 human decisions,
 technology, and nature

- Humanity is more than a global keystone species
- Our planetary
 environment shaped by
 human decisions,
 technology, and nature
- Human impacts can
 exceed non-human forces

 The human species has transitioned from individuals harvesting wild resources

- The human species has transitioned from individuals harvesting wild resources
- To communities managing local ecosystems

- The human species has transitioned from individuals harvesting wild resources
- To communities managing local ecosystems
- And now are confronted with the need to manage our planetary systems

A NEW SOCIAL REALITY

- Our social life has also become global
- Humankind has transformed from a normal terrestrial animal to a unique global phenomenon
- Nearly 8 billion people
- Over half live in urban hives of millions of individuals

A NEW SOCIAL REALITY

- Digital media and rapid transportation now connect humanity economically, socially, and culturally in a global network of multiple, cross-cutting ties
- This has created complex social-ecological-technological systems (CSETS) at planetary scale

A NEW SOCIAL REALITY

- A few millennia ago, all people lived in small communities
- An individual could observe social and natural phenomena and extrapolate the consequences of their actions on fellow humans and the natural world

This is no longer the case

PLANETARY CSETS

 Scale and complexity of our global CSETS unprecedented for any organism in earth's history

PLANETARY CSETS

- Scale and complexity of our global CSETS unprecedented for any organism in earth's history
- CSETS multi-dimensional, multiscale causality and non-linear dynamics exceed our innate abilities to anticipate the consequences of decision-making

PLANETARY CSETS

- Scale and complexity of our global CSETS unprecedented for any organism in earth's history
- CSETS multi-dimensional, multiscale causality and non-linear dynamics exceed our innate abilities to anticipate the consequences of decision-making
- And human system dynamics are major drivers of Earth's biophysical environment

NEXT GENERATION SCIENCE FOR PLANETARY SOCIOECOLOGICAL SYSTEMS

- In an Earth dominated by rapidly changing, telecoupled human and biophysical processes...
- we need next generation datadriven science and modeling to enable us to sustainably manage dynamics of a planetary socio-ecological system

NEXT GENERATION SCIENCE FOR PLANETARY SOCIOECOLOGICAL SYSTEMS

- Building new capacity in data science and modeling of human systems at planetary scales poses significant challenges
- Require coordinated, community-wide efforts
- Need to build on existing research and also be willing to explore new directions
- Briefly outline some of the relevant issues and challenges

MODELING GOALS

- All models are wrong but some are useful (G. Box)
- What kind of models are most useful produce the most value for scientific understanding and for planetary management?
- Generative/process models vs. descriptive/empirical models
- Models as experiment & scenario creation vs. replicating the planet in silico
 - Which behaviors or phenomena are controlled or boundary conditions?
 - Which are simulated?
 - Which can be ignored?

FEEDBACKS ARE CRUCIAL

- We know from abstract models and small-scale realistic simulations that...
 - Insignificant differences can have enormous consequences in complex systems due to cascades of interaction effects and feedbacks
 - Powerful forces can have negligible consequences for the same reasons
- Feedbacks in CSETS should be equally important at global scales.
- How can we create modeling environments that simulate feedbacks between human and biophysical processes?

SPACE MATTERS...EXCEPT WHEN IT DOESN'T

- Much current social science is aspatial
 - e.g.: individual cases studies, social networks, national surveys, economic indicators
- Human action and impacts on biophysical systems are local and vary across space
 - But interaction effects change across scales
 - And electronic media have created global interaction networks where distance is irrelevant—though consequences may still be local.
- How can we represent interactions of spatially-explicit social actors and distanceirrelevant information networks?

DYNAMICS CROSS MULTIPLE SCALES

- Climate is global, weather is local. Policies and institutions are top down, human action is bottom up.
 - Combined effects of many individual actions are changing climate
 - Climate imposes boundary conditions on weather which affects human actions
- Interaction effects and feedbacks cause CSETS dynamics operate across multiple scales.
- How do we model cross-scale processes and consequences

WHERE & HOW TO COARSE-GRAIN

- In all CAS, higher level emergent properties are not easily explained or predicted from properties of individual lower level components
 - All biophysical and human components of CSETS composed of subatomic particles
 - Earth's thermal balance can be represented in a single equation
 - Neither scale of analytical units or processes helpful for understanding and managing most relevant dynamics of global CSETS
- Between the scales of modeling 8 billion individual agents, and aggregating all people into a single variable, what provides the most value and is most tractable?
- How to downscale and coarse-grain up human systems processes and interactions at chosen scales?

BIG DATA ARE SMALL DATA

- Much current social science focuses on ...
 - Few, information rich cases
 - Indices aggregated across a few regions

BIG DATA ARE SMALL DATA

- Much current social science focuses on ...
 - Few, information rich cases
 - Indices aggregated across a few regions
- Need to make much better use of ...
 - Many cases with a little information in each
 - High-dimensional data
 - Integrating ontologically diverse and multi-scale data sets

PRAGMATICS

```
Setima (Sericet of Connections for over.

Setima (Sericet of Connections for over.

Setima (Sericet of Connections for over.

Setima (Self, filter(from_unerruser).select_related(depth=1)

setimated (Self, user), user2):

felf, filter(from_userruser), to_userruser2).count() > 0:

return True

return True

return True

return True

return True

former(from_userruser2, to_userruser2).count() > 0:

return True

return Tru
```


- How do we intellectually maintain and manage a global scientific agenda for modeling human systems?
- Who writes the code? In what language?
- How does modeling environment evolve?
- How do we maintain standards for API or I/O and integrate them with existing ESMs?
- Where can the code be run?
- How do we decide which modeling experiments to run?
- How do we evaluate results? (HSMIPS?)

A FIRST STEP FOR NEXT GENERATION HUMAN-EARTH SYSTEMS SCIENCE

A FIRST STEP FOR NEXT GENERATION HUMAN-EARTH SYSTEMS SCIENCE

agent-based modeling, a model library intended to provide a locus for authors and modelers, a forum for discussions

COMSES NET

Network for Computational Modeling in Social & Ecological Sciences Partner with CSDMS for organizing workshop

- NSF sponsored Research
 Coordination Network
- A community of practice for scientists using advanced modeling to study human and natural systems

 Framework for interaction and professional development

- Framework for interaction and professional development
- Overcoming challenges to knowledge dissemination and sharing

- Framework for interaction and professional development
- Overcoming challenges to knowledge dissemination and sharing
- Publishing model code to catalyze innovation in computational modeling

- >1600 members
- 348 published models
- >53,000 sitevisitors in 2015
- >16,000 modeldownloads in2015

http://www.openabm.org