LANDLAB

Modeling earth-surface dynamics with Landlab

The Landlab development team:
Jordan Adams (Tulane U.)
Nicole Gasparini (Tulane U.)
Dan Hobley (Univ. of Colorado)
Eric Hutton (CSDMS)
Erkan Istanbulluoglu (Univ. of Washington)
Jennifer Knuth (Univ. of Colorado)
Sai Siddharta Nudurupati (Univ. of Washington)
Greg Tucker (Univ. of Colorado)

Quantitative Modeling of
garth Surface Processes

.

| NATURE |

Numerical Methods in the Hydrological Sciences

Published by the American Geophysical Union

SOFTWARE

DYNAMICAL
MODEL

NUMERICAL
ALGORITHM

Rudy Slingerland and Lee Kump

MATHEMATICAL MODELING

of Earth’s Dynamical Systems

A Primer

2D models of earth-surface processes

CATCHMENT HYDROLOGY SOIL EROSION GLACIER DYNAMICS
(lvanov et al., 2004) (Mitas and Mitasova, 1998) (Kessler et al., 2006)

g

LANDSCAPE EVOLUTION IMPACT CRATERING AND DEGRADATION LAVA FLOWS
(Tucker and Hancock, 2010) (Howard, 2007) (Kelfoun et al., 2009)

What is Landlab?

* A Python-language programming library

» Supports efficient creation and/or coupling of
2D numerical models

* Geared toward (but not limited to) earth-
surface dynamics

s#w What Landlab provides

1. Grid creation and management

— Create a structured or unstructured grid in one or
a few lines of code VORONOI / DELAUNAY

— Attach data to grid elements
* Facilitates staggered-grid schemes

 Passing the grid = passing the data

RASTER
® 0 O O 0

@ | O Oenprrn Ot @

HEXAGONAL

/
)
v/
O

What Landlab provides

2. Coupling of components

— A component models a single process (e.g.,
lithosphere flexure, incident solar radiation, flow
routing across terrain)

— Components have a standard interface and can
be combined by writing a short Python script

— Save development time by re-using components
written by others

What Landlab provides

3. Input and output

Read model parameters from a formatted text
file

Read in digital terrain data (e.g., DEMs) =2 grid
Werite gridded output to files (netCDF format)

Plot data using Matplotlib graphics library

—

##w \What Landlab provides

’m
L

4. Support for cellular-automaton modeling

CellLab-CTS: Continuous-time stochastic CA
model “engine”

Cell States

2 seconds 200 seconds = «.. - W' =
|:| fluid . grain Lt :

= "m0 . -
Transitions representing motion Lt T Ttote el
Earhy .'r-'l oot o=
i e ! ”p ﬂ e i fon LR A A,
I L] lr..l- IE- . l: .-h.I ::-...... . .
.' .'.._. . .._..--_ N .‘.-. O[fecccepscccscsscsssscscscssaccnse L s
= - - s

Cell pairs without transition e L T = e . =

10

(Tucker et al., 2016 Geoscientific Model Development)

Examples of Landlab-built models

TLS Scan Location
TLS Control Point

Rain Gauge / Soil
Moisture Probes
Channel Monitoring
Site

(Source: Francis Rengers, USGS)

Storm runoff patterns in the
Transverse Ranges

500 1000 1500 2000 2500 3000 3500 4000 4500
Time (s)

(Source: Francis Rengers, USGS)

Application in a real world setting: Spring Creek, CO.

*Note scale
.) 20 differences
o 1.8
:2400 m 16
. 2320 g’f 1.4 g
@ f22a0 3 1.2 %
2160 - Q
oo 1.0 &
O]
Gl) 2000 -4 0.8 ’O\
tofeted v 1920 all 06 3
404
Storm duration 10-2
— 0.0
m I T T T T T T T
E 6 a
S 5§ -
5 4F :
5 3f .
c 2F -
(&) 1 " |
)
A0 - | | | | | | |
0 2 4 6 8 10 12 14 16

Time (hrs)

(source: Jordan Adams, Tulane University)

Cellular automaton model of
weathering along fractures

=<4V

‘_.
W,
{

Why do strike-slip faults sometimes show
distributed shear, and sometimes not?

(Source: Harrison Gray, CU-Boulder)

topographic__elevation

1500
X (None)

time = Oky VALLEY WIDENING BY
o LATERAL BEDROCK
el EROSION

¢elevation (m)

D 1 ._l o] 200 300 400 !)Ij(:- 600
distance (m)

Weathering & disturbance similar to slip rate

Climate Change Experiments #1

VEGETATION RESOURCE ,
I.';,Ii ‘ Ir -# . l'_ I"" 16
a0 12
1"
|T " [} I 'I'ul' B 408
Ak Er ;'I' |'_I|_r.'||'r.'| :'- '|,_| ."l""
;"." "' £ -f' '.” '\ 1 T -' {04
L-'-_. o T v
E]
% = 00
} }‘ et 04
. SHRUB i -08
e
et 21 -12
& .+'i 4!
BARE L e 1!; | e
Li T II- lﬁ-l 'l- IJ..IIII.II. - 1.;|..:l
0 200 400 600 80 20
X (m) X (m)
80
§ /€| Fires=1:10yrs, No Grazing P 4| Fires-1:100yrs, Grazing- 10% < Fires-1:10yrs, No Grazing >
)
5
S 'm
K]
T
£)
g 30 W
-]
v 20
§ = Grass
q == Shrub
R = bare
0 o
0 500 1000 1500 2000 2500 3000

Time in years

* Aim: make it easier
tosetupa 2D
numerical model
grid

* Grid data and
functions contained
in a single Python
object

Figure 5-19 Discretization grid for 2-D circulation model.

Slingerland, Harbaugh, and Furlong (1994)

=

gwe Currently four grid types are available:

e RasterModelGrid

HexModelGrid

e RadialModelGrid

| 100}

{3
-t
3*‘::
(L2

50|

2%V e Wyv,
%atl 3"6'8'3"'3'
ay ViV,
Vs W, N
@0 A0 0% -
= KKK

=100 =50] 50 100

S

g Cxample: creating a grid

>>> from landlab import RasterModelGrid
>>> rg = RasterModelGrid((4, 5), 10.0)

>>> rg.number of nodes
20

——u-“:tb:
LANDLAB

>>> rg.number of node_rows

A e

>>> rg.number_ of node_columns O Node (core) activetink / Face
@ Node (open boundary) /”1Inactive Link |:| Cell
5 @® Node (closed boundary)

>>> rg.x_of node

array([0., 10., 20., 30., 40., 0., 110., 20., 30., 40., 0.,
10., 20., 30., 40., 0., 10., 20., 30., 40.])

>>> rg.y_of node

array([O., 0., 0., 0., 0., 10., 1.0., 10., 10., 10., 20.,
20., 20., 20., 20., 30., 30., 30., 30., 30.1)

Nodes are
always

sorted by
y coordinate

Nodes with
equal y are
sorted by x

®------ >@------- > @7 --—---- > 18 ------ > 19
A A A A A
®---- —=3 1)}~ —-3 12 - ~-3 13 -==- -3 14
A A A A A
l i i i l
i 1 1 i i
I I I I I
I I I [I
5 e —— (6)==== R (7 R (2= --»9
A A A A A
I i i i I
: i | i :
| | | | |
0)----—-—-- »(1)---=--- »(2)--=-==-- »(3)---==-- >4
O Node (core) ’/’Active Link / Face
@ Node (open boundary) ' /jlnactive Link |:| Cell
® Node (closed boundary)

Node numbering

e Core nodes 4 1 A A

e Boundary nodes

* Open @ --.>? _____
* Fixed value f

e Fixed gradient
e Looped

o
* Closed ? """ ""? '''' --*? ----- --*? ----- ——->?

O Node (core) ,/Active Link / Face
l’ 4

© Node (open boundary) " Inactive Link |:| Cell

@® Node (closed boundary)

e

LANDLAB

,l= '

Link =
directed line
segment
connecting
two adjacent
nodes

Link
direction is
toward
upper right
half-space by
default

Grid elements: links

O Node (core)
@ Node (open boundary)
® Node (closed boundary)

',/’ Active Link

. . .
" Inactive Link

.
AT

LANDLAB

| |
LI- L]

Tail
node

>>> rg.number_of_ links

31

>>> rg.node_at_link head

array([1, 2, 3, 4, 5,
14, 11, 12, 13, 14,

>>> rg.node_at_link tail

array([O, 1, 2, 3, O,
9, 10, 11, 12, 13,

Head
node

Grid elements: links

>0
1

>0 > @

O Node (core) /”Active Link / Face

@ Node (open boundary) i/’lnactive Link |:| Cell

@® Node (closed boundary)

7, 8, 9, 10, 11, 12, 13,
16, 17, 18, 19])

6 14 7 14 8 14 5 14 6 14 7 14 8 14
15, 16, 17, 18])

Links are
sorted by
mid-point

y coordinate

Links with
equal y are
sorted by x

Link numbering

’ 27 1 28 +’ 79 ,’ 30 ,’
ORI AT RO

’-- 18 - -- 19 -3()--- 20 »>()--- 21 »

R

--- 10 ->(2--- 11 »(O-- 12
‘ A
6

5

O Node (core) /’Active Link / Face
l’ 4
@ Node (open boundary) " Inactive Link |:| Cell

® Node (closed boundary)

e Active and inactive links

HE N
H L]

ACTIVE:
Connects two core nodes OR

a core and an open
boundary

INACTIVE:
Connects to one or more

closed boundary nodes OR
Connects two open

boundary nodes

@ 2 +’ 28 ->@-- 29 >@-- 30 +’

A . A A .
2.2 |—23—|—24—|—25—| 2.6
*--- 18 ---19 .3»()--- 20 -> --- 21 -> :

eananel

O Node (core) /’Active Link / Face

Cox
@ Node (open boundary) " Inactive Link |:| Cell
@® Node (closed boundary)

Grid elements: cells

Cell =

polygon
bounded by

faces and ’ """ ""? """
containing a

node

Perimeter Q- -3)----1
nodes do not A

|

1

1

1

1

have cells

O Node (core) /’Active Link / Face
l’ 4

@ Node (open boundary) " Inactive Link |:| Cell

® Node (closed boundary)

R Grid elements: cells

Cells have:

e Area
e Faces
e A node

>>> rg.number of cells

6

>>> rg.area_of cell

array([100., 100.,

>>> rg.faces_at_cell

array([[4, 7, 3,
[5, 8, 4,
[6, 9, 5,
[11, 14, 10,
[12, 15, 11,
[13, 16, 12,

>>> rg.node_at_cell

array([6, 7, 8, 11,

100.

01,
1],
2],
71,
81,
211)

12,

14

100.

131)

14

100.

14

100.1])

----- -->

O Node (core)
@ Node (open boundary)
@® Node (closed boundary)

/’Active Link

-) .
" Inactive Link

LANDLAB

Cells are
sorted by
y coordinate

Cells with
equal y are
sorted by x

numbering

. A A
----- SEEE S PSS
4 ; A
----- -3 0 m=m=demPp 1 —mmmd--p 2

O Node (core)
@ Node (open

® Node (closed boundary)

boundary)

',/’ Active Link

oA . .
" Inactive Link

. I

s Fields: attaching data to the grid

* Afield is a NumPy array containing data that are
associated with a particular type of grid element
(typically nodes or links)

* Fields are 1D arrays

* Values correspond to the element with the same ID.
Example: value 5 of a node field belongs to node #5.

* Fields are “attached” to the grid (the grid object
includes dictionaries listing all the fields)

* Fields have names (as strings)

* Create fields with grid functions add_zeros,
add ones, or add empty

—

LANDLAB

>>> h =
>>> h

rg.add zeros('water depth', at='node')

array([0., O.

>>> h[1l]
>>> h
array ([

0.

, O.
100.

0.,
0.,
0.,

4 o'l
14 o'l
0

100.,
0.,
0.1)

0.
0.

14

14

o.,
0.,

0.,
0.,

>>> rg.at_node['water_ depth']

array ([

0.,
0.,
0.,

100.,
0.,
0.1)

0.,
0.,

o

0., O.

0.1])

o.,
0.,

0.,
0.,

Fields: example

14

o.,
0.,

0.,
0.,

0.,
0.,

0.,
0.,

& Reading raster digital terrain data

LANDLAB
e ™

Landlab’s read_esri_ascii function:
e Reads data from ESRI ASCII raster file

e Creates a RasterModelGrid and a
data field

e Also: read/write netCDF files
e Example:

>>> from landlab.io import read esri_ ascii
>>> (mg, z) = read_esri_ascii('west_bijou _gully.asc',
name='elevation’)

elevation

250 1600

41400
200
41200

150 41000

4 800

100 Y 600

400
50

200

0
0 20 40 60 80100120

Staggered-grid schemes:
Scalars at nodes, vectors at links

w

e

1 2

4 5

w

Figure 5-19 Discrc-tiiglitiicgagrridrfor 2-D circulation model. S|inger|and’ Harbaugh’ and Fur|ong (1994)

Linear diffusion example

n
= _Vv
ot o
n = land-surface elevation
t = time

q.= sediment flux [LQ/T]

qs= —DVn

D = transport coefficient [L?/T]

The numerical problem:
finite-volume solution scheme

Each interior node 2 lies within a cell whose
surface area is A;.

We can write mass balance for cell 7 in terms
of sediment fluxes across each of its four

faces: o o

N;

dn;
dt

Ax
A;

[QWest- ..

Quest -

dn;, Acx

dt A;

[dwest — deast---

qwest-> (o]) qeast

dn;
dt

Ax

A;

[dwest — Qeast + dsouth---

Quest -

P qeast

qsouth

dn; _ Oz

dt A, [QWest—Qeast'l‘qsouth—qnorth]

qnorth
2 N S
b b

N;

Quest b o b Qeast
P

A A A
1

qsouth

Flux depends on gradient, which is

calculated between adjacent nodes:

@ ~_D (7% — 77west>
Ox (west face) Az

Qwest = —D

Nwest N;
OoO——e—>0

link from n.<s: to N;

Calculating the gradient of a scalar field

>>> deta dx = rg.calc grad at link(eta)

e etais ascalar defined at nodes

* One value of deta _dx for every link

* Positive when eta increases in the link direction

* Negative when eta decreases in the link direction

ﬂ west I’] i
O———30

link from n,.: to n;

Calculating the divergence of a gradient field

>>> q = -D * deta dx

>>> dqdx = rg.calc flux div_at node(q)

q is a vector defined at links
One value of dgdx for every node
Positive when net flux is outwards

qnorth
S S

qwest -

+

>

P

N;

o

A A A

P qeast

cIsouth

Q: What if you need a scalar value at a link?
A: Landlab’s mapping functions

2.0 3.5 5.0

>>> h_link = rg.map_mean_of _link_nodes_to_link(h)

w =102 W= 9.7
h=20 2.0 h=5.0

>>> h_link = rg.map_value_at_max_node_to_link(w, h)

Components

* A component is a self-contained piece of code
that typically represents one process

e Components have a standardized interface that
allows them to be easily coupled with one
another using a Python script

* Components are normally implemented as
Python classes. For example:

>>> 1d = LinearDiffuser(rg, linear diffusivity=0.01)
>>> ld.run_one_step(dt=1.0)

The components

£

e Describe individual
surface processes

* “Plug & Play”
e Standard interface
Use the library, or BYO

Documentation: Users’ Guide

€) (O @ GitHub, Inc. (US) | https://github.com/landlab/landlab/wiki/User-Guide @ Psearch $ ANB0O 4 =-0 o
- m
User GUIde Edit New Page

Jenny nuih ediied fhis page on Mar 1-531evisons— https: / /github.com/landlab/landlab/wiki/User-Guide

Landlab | About | Examples | User Guide | Developer API | Tutorials | FAQs w Pages
Installation
Home
e Instructions for a standard install About

° : " H L
Installing from source code, "developer install Sl m Slodel

CellLab CTS 2015 Users Manual

Basics of Python

Components

R . . . Correcting Python Version
If you are new to Python or scientific programming, start with an intro to the nuts and bolts of
Developing with github and git

Landlab:
Examples

Python, NumPy, SciPy, and Cython FAGs

e Why Python? Grid

e Getting to know Python Installing Landlab

o If you know MatLab... Installing Landlab from source
e NumPy, SciPy, and efficient coding style code ("developer install")
e Cython Installing Landlab with Anaconda

Installing Python

Landlabls grid Introducing Landlab 1.0beta

Documentation: Reference / API

landlab.readthedocs.io/en/latest/#developer-documentation ¢ Q search 4 A w0 B Aa » - 0
e | Landiab Reference Manualand
ndlab Rtefterence Manual and API API Documentation
ocumentation . -
cume http://landlab.readthedocs.io = " “"*®
The Landlab Developer API is a general reference manual for Landlab. = Grid types
» Methods and properties
Grids common to all grids
m Specialized methods and
Grid types properties for Rectilinear

Grids ‘raster grids’
m Specialized methods and
properties for Voronoi-

As of Landlab version 0.2, there are four types of Landlab grid:

* Raster :
) Delaunay grids
* Voronoi-Delaunay = Specialized methods and
e Hex properties for hex grids
o Radial m Specialized methods and
properties for radial grids
The base class is ModelLGrid with subclasses RasterModelGrid and VoronoiDelaunayGrid. = Components

= Hillslope geomorphology

= Fluvial geomorphology
RadialModelGrid. = Flow routing

VoronoiDelaunayGrid has two further specialized subclasses: HexModelGrid and

= Shallow water
Methods and properties common to all grids hydrodynamics
m Land surface hydrology

¢ Mapping data between different grid elements s Vegetation

o Grid mapping functions = Precipitation
¢ Gradient calculators m Terrain Analysis
o Gradient calculation functions m Glacial Processes
e Divergence calculation functions u fT__ectonics
m Fre

¢ QGrid creation from a formatted input file

! = |m raterin
¢ General class methods and attributes of the LandlLab. grid.base module pact cratering

® |nitial conditions: random
o Getting Information about a Grid field aenerators

Documentation: source code, tutorials, etc., publicly available on GitHub

€) () @ GitHub, Inc. (US) ' https://github.com/landlab/ @ CPidrological Sciences> ¥ A 1w B A4 » |- O &

https://github.com/landlab

WY [»]W:Y:] a python toolkit for for modeling earth surface processes

- http:/landlab.github.io

E] Repositories People 9 Teams 2 Settings

| New roposttory | People .

landlab Python 25 554
Landlab codebase, wiki, and tests

Updated 27 minutes ago

tutorials Jupyter Notebook w0 {71

Landlab tutorials

Invite someone

Updated 35 minutes ago

landlab.github.io HTML %0 70
Landlab website

Updated 19 hours ago

https://github.com/landlab/landlab/wiki/Tutorials

o0 e f O Tutorials - landlab/landlab ... -7\+

(- (i) @ GitHub, Inc. (US) | https://github.com/landlab/landlab/wiki/Tutorials c cQIydroIogical Sciences?> ¥ @ ﬁ’ﬁ 4 '&’r‘* Q s>

IPython notebook tutorials

Instructions on how to run an IPython notebook can be found here: https://github.com/landlab
/tutorials/blob/master/README.md

A short IPython notebook tutorial along with a screencast can be found here (the tutorial uses an
example with statistics, but you can substitute Landlab!): http://www.randalolson.com/2012/05
/12/a-short-demo-on-how-to-use-ipython-notebook-as-a-research-notebook/

Click here to download all the tutorials
A suggested introduction to Landlab follows roughly this order:

¢ Introduction to Python and NumPy

e Introduction to Landlab: example model of fault-scarp degradation
¢ Introduction to the model grid object

¢ Introduction to Landlab data fields

¢ Introduction to plotting output with Landlab

¢ Introduction to using the Landlab component library

e Using the gradient and flux-divergence functions

¢ Mapping values from nodes to links

e Setting boundary conditions on Landlab grids (several tutorials)
e reading DEMs into Landlab

e How to write a Landlab component

CellLab CTS 2015 Users Manual
Components

Correcting Python Version
Developing with github and git
Examples

FAQs

Grid

Installing Landlab

Installing Landlab from source
code ("developer install")

Installing Landlab with Anaconda
Installing Python

Introducing Landlab 1.0beta

Show 8 more pages...

Add a custom sidebar

Clone this wiki locally

https://github.com/landlab/ B2

If you still need to install:

http://landlab.github.io

=>» Install

Follow instructions

How to update Landlab

In terminal window or command prompt:
pip uninstall landlab

conda install landlab —c landlab

How to download and run tutorials

e Goto:
https://github.com/landlab/landlab/wiki/Tutorials

e Click:

Click here to download all the tutorials
e Save ZIP

* Double-click to unpack

* |n terminal or command window, navigate to new
folder

* Enter: Jjupyter notebook
* Shift-Enter to move through each cell

