Gravity Current Flow past a Circular Cylinder:

Forces, Wall Shear Stresses and Implications for Scour

E. Gonzalez-Juez and E. Meiburg (UCSB)
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Motivation

* Governing equations / computational approach
Results

- drag and lift forces

- wall shear stress

* Summary and outlook

UCSB
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Turbidity current

« Underwater sediment flow down
the continental slope

» Can transport many km’ of
sediment

* Can flow O(1,000)km or more

 Often triggered by storms or
earthquakes

* Repeated turbidity currents in the
same region can lead to the
formation of hydrocarbon

reservoirs

Turbidity current.
http://www.clas.ufl.edu/



Turbidity current (cont’d)
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Turbidity current (cont’d)
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Off the coast of Santa Barbara/Goleta



Theoretical framework: Dilute flows

Volume fraction of particles of O(10% - 107):

particle radius « particle separation

particle radius « characteristic length scale of flow

coupling of fluid and particle motion primarily through

momentum exchange, not through volumetric effects

effects of particles on fluid continuity equation negligible



Moderately dilute flows: Two-way coupling

Mass fraction of heavy particles of O(10%), small particle inertia
(e.g., sediment transport):

* particle loading modifies effective fluid density

e particles do not interact directly with each other

Current dynamics can be described by:

* incompressible continuity equation

* variable density Navier-Stokes equation (Boussinesq)
* conservation equation for the particle concentration field

— don’t resolve small scale flow field around each particle,
but only the large fluid velocity scales



Moderately dilute flows: Two-way coupling (cont’d)
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Model problem

Lock exchange configuration

Dense front propagates
along bottom wall

Light front propagates
along top wall




3D turbidity current — Temporal evolution

DNS simulation (Fourier, spectral element, 7x10” grid points)

Necker, Hdrtel, Kleiser and
Meiburg (2002a,b)

o turbidity current develops lobe-and-cleft instability of the front

e current is fully turbulent

* erosion, resuspension not accounted for



Examples of pipelines under threat from gravity currents
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Placement of pipelines on the ocean floor

* avoid submarine canyons



Flow configuration for numerical simulation

Lock release flow, compositional current only:
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Numerical technique

* DNL/LES finite volume code (Pierce & Moin 2001)

» central differencing, Crank-Nicolson time stepping

» Poisson equation for pressure solved by multigrid technique
» FORTRAN code parallelized with MPI

» simulations on up to 64 CPUs



Temporal evolution of the flow

* what magnitude forces and moments are exerted on the obstacle?
e steady vs. unsteady?

 erosion and deposition near the obstacle?



Results: Drag and lift force

Comparison with experiments by Ermanyuk and Gavrilov (2005):

experiment

. -.-. 2D simulation

impact, transient and quasisteady stage ---- 3D simulation

2D simulation captures impact, overpredicts quasisteady fluctuations

3D simulation captures impact and quasisteady stages well

difference between 2D and 3D similar to uniform flow past cylinder



Results: Drag and lift force (cont’d)

Origin of force fluctuations:

1

o Karman vortex shedding from the cylinder
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Results: Spanwise drag variation
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Impact stage:
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» spanwise drag variation dominated by lobe-and-cleft structure



Results: Spanwise drag variation (cont’d)

Quasisteady stage:

» spanwise drag variation scales with cylinder diameter



Results: Influence of gap size

Streamwise vorticity structure:

gap width ~ cylinder diameter gap width « cylinder diameter

o small gap size distorts vortex structure in the near wake



Results: Wall shear stress
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* longitudinal structures, maximum under the cylinder



Results: Wall shear stress (cont’d)

Friction velocity:

* longitudinal structures, maximum under the cylinder



Results: Influence of gap size

Friction velocity below the cylinder:
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 large spanwise variations during impact
o small gap size results in larger friction velocity

» spanwise variations can result in local scouring



Summary

* high resolution 2D and 3D simulations of gravity currents
interacting with submarine pipelines

o 2D simulations capture impact, but overpredict force fluctuations
during quasisteady stage, 3D simulations capture both stages

* for gap sizes > cylinder diameter, the structure is similar to
uniform flow past cylinder

* for gap sizes « cylinder diameter, the flow structure is distorted

* during impact stage, spanwise drag variation determined by
lobe-and-cleft structure

* during late stages, spanwise variations scale with cyl. diameter

* wall shear stress has longitudinal structures, max. under cylinder

» strong spanwise wall shear stress fluctuations during impact —

potential for localized scour
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