Chesapeake Bay Hydrodynamic and Hypoxia Model Intercomparison: Initial Results Carl Friedrichs and the SURA Modeling Testbed Estuarine Hypoxia Team

Estuarine Hypoxia Component of the SURA Super-Regional Modeling Testbed

• Carl Friedrichs (VIMS) – Team Leader

- Federal partners
- David Green (NOAA-NWS) Transition to operations at NWS
- Lyon Lanerole (NOAA-CSDL) Transition to operations at CSDL; CBOFS2
- Lewis Linker (EPA), Carl Cerco (USACE) Transition to operations at EPA; CH3D, CE-ICM
- Doug Wilson (NOAA-NCBO) Integration w/observing systems at NCBO/IOOS

Non-federal partners

- Marjorie Friedrichs*, Aaron Bever* (VIMS) Metric development and model skill assessment
- Yun Li, Ming Li (UMCES) ROMS hydrodynamics in CB
- Wen Long*, Raleigh Hood* (UMCES) ChesROMS with NPZD water quality model
- Scott Peckham*, Jisamma Kallumadikal* (CSDMS) Multiple ROMS grids, forcings, O₂ codes
- Malcolm Scully* (ODU) ChesROMS with 1 term oxygen respiration model
- Kevin Sellner* (CRC) Academic-agency liason; facilitator for model comparison
- Jian Shen*, Bo Hong (VIMS) SELFE, FVCOM, EFDC models in CB John Wilkin, Julia Levin (Rutgers) – ROMS-Espresso + 7 other MAB hydrodynamic models
- * = CSDMS Members

Funded by NOAA/IOOS through SURA (Southeastern Universities Research Association). Initially one year of funding, tentative start date June 1, 2010

Part of a larger NOAA/IOOS/SURA larger "Super-Regional Testbed to Improve Models of Environmental Processes on the U.S. Atlantic and Gulf of Mexico Coasts"

Pilot projects in the larger "Super-Regional Testbed" will address three chronic issues of high relevance within the super region:

- Coastal Inundation
- Estuarine Hypoxia
- Shelf Hypoxia

Motivation:

January 2010 NOAA Funding Opportunity Announcement: "FY2010 Integrated Ocean Observing System Community Modeling Environment To Support a Super-Regional Test Bed":

"The program priorities for this funding opportunity are to conduct a super-regional testbed demonstration of the community modeling environment by transitioning models, tools, toolkits and other capabilities to a Federal operational facility to improve the understanding, prediction, and mitigation of the consequences of extreme events and chronic conditions."

How did we choose our models?

 Include existing Federal models presently used in operations/decision making (e.g., NOAA-CSDL CBOFS2, EPA/USACE CH3D, EPA/USACE ICM, Navy/NOAA HyCOM-NCODA, Navy NCOM, NOAA-NWS RTOFS).

• Include other mature, existing open source community models that have a significant number of users around the US and/or globe (e.g., 4 flavors of ROMS, SELFE, FVCOM, EFDC, COAWST, Mercator).

- In the horizontal, include structured and unstructured horizontal grids.
- In the vertical, include both z-grids and sigma-grids.
- Include varying degrees of horizontal resolution/model speed.
- Include varying degrees of complexity of model formulation (for ecosystem/oxygen).
- Include structure to aid in interoperable linking/model swapping.

Project Deliverables

• General results of data-model intercomparison, including quantification of model accuracy, complexity, efficiency and sensitivity.

- Identification of strengths and weaknesses of various approaches (i.e., structured vs. unstructured; z- vs. sigma-grid; high resolution vs. high performance; more complex vs. simpler water quality formulations).
- Advice to NOAA-CSDL (via Lyon Lanerole, Frank Aikman) and NOAA-NWS (via David Green) for implementing 3-day forecasts of hydrodynamic/water quality conditions.
- Advice to EPA/USACE CBP (via Lewis Linker, Carl Cerco) for scenario-based hydrodynamic/ water quality model improvement for "2017" EPA/CBP modeling effort.
- Delivery to NOAA NCBO (via Doug Wilson) of interactive web-based summary of final model output, model data comparisons, and project conclusions

EPA/USACE CBP CH3D Model River boundary **River** input (USGS or WSM) INPUT Flow, T/S Shore boundary Lateral flow (WSM) INPUT Flow, (T/S) 57000 grid points z-grid, $\Delta z = 5$ ft

- **ROMS 3.0**
- Curvilinear Horizontally
- S-coordinate Vertically
- Includes major tributaries
- Coarse mesh for model development (100*150*20)
- Forcing: Tides, Winds, Heat Fluxes and Rivers
- Currently expanding the biogeochemical model
- Goal: Improved Simulation of BGC processes
- **Open Source Available at:** http://sourceforge.net/projects/chesroms/

UMCES (ROMS) Model for Chesapeake Bay

 Free surface bnd: (Heat exchange. Wind, drag...)

 Bottom boundary (friction)

 Ocean boundary: (T/S/H)

Impacting circulation /vertical mixing: tides, current, wind, density effects (S/T), freshwater. turbulence.

(Slide courtesy Ping Wang, CBPO)

- D canal)

- 291 x 332 x 20 grid points
- $\Delta y \leq 3380$
- ocean bottom; 20 levels

- in horizontal

(Slide courtesy Ming Li)

