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1. OVERVIEW

The learning goals of this section of the short course are:

e To gain a clearer understanding of how a typical landscape evolution model
(LEM) solves the type of governing equations that we saw on Day 1.

e To understand how continuity of mass is maintained by a typical LEM, and
some of the limitations that arise.

e To appreciate some of the ways in which climate and hydrology can be rep-
resented in a LEM, and some of the simplifications involved.

e To appreciate that working with LEMs involves choosing a level of simplifi-

cation in the governing physics that is appropriate to the problem at hand.

To gain hands-on experience actually using a LEM.

To get a sense for how and why hillslope diffusion produces convex hillslopes.

To appreciate the concepts of transient versus steady topography.

To acquire a feel for the similarity and difference between detachment-limited

and transport-limited modes of fluvial erosion.

e To understand the connection between fluvial physics and slope-area plots.

e To appreciate that LEMs (1) are able to reproduce (and therefore, at least
potentially, explain) common forms in fluvially carved landscapes, (2) can
enhance our insight into dynamics via visualization and experimentation,
but (3) leave open many important questions regarding long-term process
physics.

e To develop a sense for how to use landscape evolution models.

2. INTRODUCTION TO LEMS

2.1. Brief History.
e G.K. Gilbert’s “word pictures” (Gilbert, 1877)
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TABLE 1. Partial list of numerical landscape models published be-
tween 1991 and 2005.

Model Example reference Notes
SIBERIA Willgoose et al. (1991) Transport-limited;
Channel activator function
DRAINAL Beaumont et al. (1992) “Undercapacity” concept
GILBERT Chase (1992) Precipiton
DELIM/MARSSIM Howard (1994) Detachment-limited;
Nonlinear diffusion
GOLEM Tucker and Slingerland (1994) Regolith generation;
Threshold landsliding
CASCADE Braun and Sambridge (1997) Irregular discretization
CAESAR Coulthard et al. (1996) Cellular automaton algorithm
for 2D flow field
ZSCAPE Densmore et al. (1998) Stochastic bedrock
landsliding algorithm
CHILD Tucker and Bras (2000) Stochastic rainfall
EROS Crave and Davy (2001) Modified precipiton
TISC Garcia-Castellanos (2002) Thrust stacking
LAPSUS Schoorl et al. (2002) Multiple flow directions
APERO/CIDRE Carretier and Lucazeau (2005) Single or multiple

flow directions

e 1960s: 1D models (Culling, Ahnert, Kirkby, Young)

e 1970s: 2D models

e Late 1980s and 1990s: beginning of “modern era,” (SIBERIA, GILBERT,
DRAINAL, followed by others).

e Today: many model codes (see Table 1 for a partial list), many applications,
scales, and objectives, ranging from soil erosion to continental collision.

2.2. Brief Overview of Models and their Uses.

e Some examples: coupled erosion-deposition systems, meandering, Mars cra-
tering, forecasting mine-spoil degradation, estimating erosion risk to buried
hazardous waste.

e Overview: powerful tools, but with process ingredients that are provisional
and subject to test. Important to have continuing cross-talk between models
and observations (subjects for later in the week).

e This morning: overview of how a LEM works, including how terrain and
water flow are represented numerically and how the processes we reviewed
yesterday are computed.
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3. CONTINUITY OF MASS AND DISCRETIZATION

Yesterday we saw examples of mass continuity equations for a column of soil or
rock, such as:

on .
(1) 5 = B Vi
This is one of several variations; for discussion of others, see Tucker and Hancock
(2010). Some models, for example, distinguish between a regolith layer and the
bedrock underneath. [illustration of this] Note that this type of mass continuity
equation applies only to terrain that has one and only one surface point for each
coordinate; not, for example, a vertical cliff or an overhang.

A LEM computes n(z,y,t) given (1) process rules, (2) initial conditions, and (3)
boundary conditions.

One thing all LEMs have in common is that they divide the terrain into discrete
elements. Often these are square elements, but not always (CASCADE and CHILD).
[Mlustration of an element]

For a discrete element, continuity of mass enforced by the following equation (in
words):

Time rate of change of mass in element = mass rate in at boundaries - mass rate
out at boundaries + inputs or outputs from above or below (tectonics, dust deposition,

etc.)
Mathematically,
N
2 =B+ — i\

Notice that, for the sake of simplicity, I've pulled a trick here in writing this in terms
of volumetric fluxes. This is known as a finite-volume method because it is based on
computing fluxes in and out along the boundaries of a finite volume of space.

Some terminology: a cell is a patch of ground with boundaries called faces. A node
is the point inside a cell at which we track elevation (and other properties). On a
raster grid, cells are square and nodes fall at the center of the cell. On the irregular
mesh used by CASCADE and CHILD, the cell is the area of land that is closer to
that particular node than to any other node in the mesh. (It is a mathematical entity
known as a Voronoi cell or Thiessen polygon; for more, see Braun and Sambridge
(1997), Tucker et al. (2001))

Equation 2 gives us the time derivatives of every node on the grid. How do we
solve for the new elevations at time ¢? There are many ways to do this, including
matrix-based implicit solvers (see for example Fagherazzi et al. (2002)). We won’t
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get into the details of numerical solutions (at least not yet), but for now note that
the simplest solution is the forward-difference approximation:

) d;  ni(t + At) —mi?)
dt JAN?
1 N

The main disadvantage of this approach is that very small time steps are typically
needed in order to ensure numerical stability. (CHILD uses a variant of this that seeks
the smallest possible value of At at each iteration). A good discussion of numerical
stability, accuracy, and alternative methods for diffusion-like problems can be found
in Press et al. (2007).

4. GRAVITATIONAL HILLSLOPE TRANSPORT

Geomorphologists often distinguish between hillslope and channel processes. It’s
a useful distinction, although one has to bear in mind that the transition is not
always abrupt, and even where it is abrupt, it is often either discontinuous or highly
dynamic or both.

Alternatively, one can also distinguish between processes that are driven nearly
exclusively by gravitational processes, and those that involve a fluid phase (normally
water or ice). This distinction too has a gray zone: landslides are gravitational
phenomena but often triggered by fluid pore pressure, while debris flows are surges
of mixed fluid and solid. Nonetheless, we will start with a consideration of one form
of gravitational transport on hillslopes: soil creep.

As noted on Day 1, for relatively gentle, soil-mantled slopes, there is reasonably
strong support for a transport law of the form:

(5) qgs = —DVn

Using the finite-volume method outlined in equation 2, we want to calculate ¢; at
each of the cell faces. Suppose node ¢ and node k are neighboring nodes that share
a common face (we’ll call this face j). We approximate the gradient between nodes
1 and k as:

Mk — 1

6 si ~—-D
(6) (et Lik

where ¢y, is the volume flux per unit width from node k& to node i (if negative,
sediment flows from i to k), and L; is the distance between nodes. On a raster grid,
Ly, = Ax is simply the grid spacing. To compute the total sediment flux through
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face j, we simply multiply the unit flux by the width of face j, which we denote \;;
(read as “the j-th face of cell 7):

(7) Qsite = ik /\z’j

[Mlustration of cells and fluxes|

Getting Set Up with CHILD. Our first exercise is simply to run the executable
file to make sure it is installed and working correctly. In some cases, it might be nec-
essary to create a new executable file from the source code. For these exercises, the
executables should be in folders under ChildExercises/Executables, with folders
for IntelMac0S10.6, IntelMac0S10.5andEarlier, Cygwin and Win32. For conve-
nience, copy the binary for your platform from its subfolder to the ChildExercises
folder.

To navigate folders and run CHILD, you will need to use a UNIX shell (unless
working in the Command window under Windows): either the Terminal application
on a Mac, or a UNIX emulator shell such as cygwin on a PC. To change folders
(“directories” in UNIX-speak), use cd followed by the folder name. A single period
represents the current working directory; two periods represent the next directory
up. For example, the command cd .. takes you one level up. To get a list of files
in a directory, use 1s. (For Command prompt under windows, use dir instead of 1s
and backslashes instead of forward slashes).

On a Mac: create a new terminal window by running the Terminal application
(usually found under Applications/Utilities). Navigate to the folder containing the
executable file child and type ./child.

On a Linux computer: create a new unix terminal window. Navigate to the
folder containing the executable file child and type ./child.

On a PC with Cygwin: start up cygwin. In the cygwin command window,
navigate to the folder containing the executable file child.exe and type ./child.

On a PC: start up Command Window. In the command window, navigate to the
folder containing the executable file child.exe and type child.

You should see something like the following;:

Usage: ./child [options] <input file>
-—-help: display this help message.
—--no-check: disable CheckMeshConsistency().
--silent-mode: silent mode.

--version: display version.
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While we're at it, let’s get ready to visualize the output. Start Matlab. The first
thing we will do is tell Matlab where to look for the plotting programs that we will
use. At the Matlab command prompt type:

path( path, ’childFolderLocation/ChildExercises/MatlabScripts’ )

For childFolderLocation, use the path name of the folder that contains the CHILD
package.

In Matlab, navigate the current folder to the location of the example input file
hillslopel.in (which should end in: ChildExercises/Hillslopel).

(Windows note: use a backslash instead of a forward slash).

CHILD Exercise: Hillslope Diffusion and Parabolic Slopes.

(1) In your terminal window, navigate to the ChildExercises/Hillslopel folder.
(2) To run the example, in your terminal window type:
../child hillslopel.in
(3) A series of numbers will flash by on the screen. These numbers represent
time intervals in years. The 2-million-year run takes about 20 seconds on a
2GHz Intel Mac. When it finishes, return to Matlab and type:
m = cmovie( ’hillslopel’, 21, 200, 200, 100, 50 );
(This command says “generate a 21-frame movie from the run ‘hillslopel’
with the z-, y- and z- axes set to 200, 200 and 100m, respectively, and with
the color range representing 0 to 50m elevation).
(4) To replay the movie, type movie (m).
(Windows note: we found that under Vista and Windows 7, the movie figure gets
erased after display; slightly re-sizing the figure window seems to fix this).

The analytical solution to elevation as a function of cross-ridge distance y is:
U

8) 2) =55 (L7 = (¥ = w)°)

where L is the half-width of the ridge (100m in this case) and y0 is the position of
the ridge crest (also 100m). The effective uplift rate u, represented in the input file
by the parameter UPRATE, is 10~*m /yr. The diffusivity coefficient D, represented in
the input file by parameter KD, is 0.01m?/yr. Next, we’ll make a plot that compares
the computed and analytical solutions.

Type the following in Matlab:

(1) ya = 0:200;  This is our z-coordinate

(2) u = 0.0001; D = 0.01; yO = 100; L = 100;

(3) za = (u/(2*D))*(L"2-(ya-y0)."2);

(4) figure(2), plot( ya, za ), hold on

(5) xyz = creadxyz( ’hillslopel’, 21 ); Reads node coords, time 21
(6) plot( xyz(:,2), xyz(:,3), ’r.” ), hold off
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(7) legend( ’Analytical solution’, ’CHILD Nodes’ )

Diffusion theory predicts that equilibrium height varies linearly with u, inversely with
D, and as the square of L. Make a copy of hillslopel.in and open the copy in
a text editor. Change one of these three parameters. To change u, edit the number
below the line that starts with UPRATE. Similarly, to change D, edit the value of
parameter KD. If you want to try a different ridge width L, change both Y_GRID_SIZE
and GRID_SPACING by the same proportion (changing GRID_SPACING will ensure that
you keep the same number of model nodes). Re-run CHILD with your modified input
file and see what happens.

4.1. Nonlinear Diffusion. As discussed on Day 1, the simple slope-linear transport
law works poorly for slopes that begin to approach the angle of repose for sediment
and rock. The next example explores what happens to our ridge when we (1) increase
the relative uplift rate, and (2) use the nonlinear diffusion transport law:

—DVz

o s

Nonlinear Diffusion and Planar Slopes.

(1) Navigate to the Hillslope?2 folder
(2) Run CHILD: ../child hillslope2.in
(3) In Matlab, navigate to the Hillslope2 folder
(4) When the 70,000-year run (~1 minute on a 2GHz mac) finishes, type in
Matlab:
m = cmovie( ’hillslope2’, 21, 200, 200, 100, 70 );

If we had used linear diffusion, the equilibrium slope gradient along the edges of the
ridge would be S = uwlL/D = (0.001)(100)/(0.01) = 10m/m, or about 84°! Instead,
the actual computed gradient is close to the threshold limit of 0.7. Notice too how
the model solution speed slowed down as the run went on. This reflects the need for
especially small time steps when the slopes are close to the threshold angle.

4.2. Remarks. There is a lot more to mass movement than what is encoded in
these simple diffusion-like transport laws. Some models include stochastic lands-
liding algorithms (e.g., CASCADE, ZSCAPE). Some impose threshold slopes (e.g.,
GOLEM). One spinoff version of CHILD even includes debris-flow generation and
routing (Lancaster et al., 2003).

5. RAINFALL, RUNOFF, AND DRAINAGE NETWORKS

In order to calculate erosion, sediment transport, and deposition by running water,
a model needs to know how much surface water is flowing through each cell in the
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model. Usually, the erosion/transport equations require either the total discharge,
Q [L3/T], the discharge per unit channel width, ¢ [L?/T], or the flow depth, H.

There are three main alternative methods for modeling the flow of water across
the landscape:

(1) Methods based on contributing drainage area

(2) Numerical solutions to the 2D, vertically integrated and time-averaged Navier-
Stokes equations

(3) Cellular automaton methods

5.1. Methods Based on Drainage Area. On Day 1 we were introduced to the
concept of drainage area: the horizontally projected area of land that contributes
flow through to a particular channel cross-section or to unit length of contour on a
hillslope.

Quick refresher: A is the size of the land area that contributes flow to a particular
cross-section of stream channel. A/b is the area per unit contour length (b is contour
length) contributing flow to a particular point on a hillslope.

For a numerical landscape model that uses discrete cells, A is defined as the area
that contributes flow to a particular cell. When topography is represented as a raster
grid, the most common method for computing drainage area is the D& method. Each
cell is assigned a flow direction toward one of its 8 surrounding neighbors. An
algorithm is then used to trace flow paths downstream and add up the number of
cells that contribute flow each cell.

(D8 illustration]

[Simple 3x3 example of flow directions and drainage areas on a raster grid]

For the Voronoi cell matrix that CHILD and CASCADE use, the simplest routing
procedure is a generalization of D8. Each cell i has V; neighbors. As we noted
earlier, the slope from cell i to neighbor cell k is defined as the elevation difference
between the nodes divided by the horizontal distance between them. Thus, one can
define a slope for every edge that connects each pair of nodes. There is a slope value
for each of the N; neighbors of node i. The flow direction is assigned as the steepest
of these slopes.

[Voronoi routing illustration]

Single-direction flow algorithms have advantages and disadvantages. Some models
use a multiple flow direction approach to represent the divergence of flow on relatively
gentle slopes or divergent landforms. This is most appropriate for models that oper-
ate on a grid resolution significantly smaller than the length of a hillslope. When grid
cells are relatively large, conceptually each cell contains a primary channel, narrower
than the cell, that is tracked.
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Flow Over Noisy, Inclined Topography.

(1) In the terminal window, navigate to the Networkl folder and run the input
file by typing:
../child networkl.in
(2) In Matlab, navigate to the Networkl folder
(3) figure(1), clf
(4) colormap pink
(5)
(6)
(

a = cread( ’networkl.area’, 1 );

The networks are formed because of noise (£1m in this case) in the initial surface,
which causes flow to converge in some places.

The simplest method for computing discharge from drainage area is to simply
assume (1) all rain runs off, and (2) rain lasts long enough that the entire drainage
network is in hydrologic steady state. In this case, and if precipitation rate P is
uniform,

(10) Q=PA

A number landscape modeling studies have used this assumption, on the basis of
its simplicity, even though it tends to make hydrologists faint! The simplicity is
indeed a virtue, but one needs to be extremely careful in using this equation, for at
least three reasons. First, obviously () varies substantially over time in response to
changing seasons, floods, droughts, etc. We will return to this issue shortly. Second,
there is probably no drainage basin on earth, bigger than a hectare or so, from which
all precipitation runs off. Typically, evapotranspiration returns more than half of
incoming precipitation to the atmosphere. Third, hydrologic steady state is rare and
tends to occur only in small basins, though it may be a reasonable approximation
for mean annual discharge in some basins.

[Susquehanna and/or Kentucky River basin examples|

River discharge, whether defined as mean annual, bankfull, mean peak, or some
other way, often shows a power-law-like correlation with drainage area. Some models
take advantage of this fact by computing discharge using an empirical approach:

(11) Q = bA®

where ¢ typically ranges from 0.5-1 and b is a runoff coefficient with awkward units
that represents a long-term “effective” precipitation regime.

CHILD’s default method for computing discharge during a storm takes runoff at
each cell to be the difference between storm rainfall intensity P and soil infiltration
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capacity I:
(12) Q=(P-1A

which of course is taken to be zero when P < [.

5.2. Shallow-Water Equations. Some landscape models are designed to address
relatively small-scale problems such as channel initiation, inundation of alluvial fan
surfaces, channel flood flow, etc. In such cases, the convergence and divergence of
water in response to evolving topography is an important component of the prob-
lem, and is not adequately captured by the simple routing schemes described above.
Instead, a tempting tool of choice is some form of the shallow-water equations, which
are the vertically integrated form of the general (time-averaged) viscous fluid-flow
equations. One form of the full shallow-water equations is:

on _ . (0¢ | Oqy
1 —_— — —
(13) ot ! (83: Ty
0¢,  Ogzu  Ogyu oh o T
14 oh on | T _
(14) ot * ox oy +gh8x +gh0x + P 0

%y %+aqmv+gh@+gh2—z+%zo

1
(15) ot oy ox oy

These equations express continuity of mass, x-directed momentum, and y-directed
momentum, respectively. They are challenging and computationally expensive to
integrate numerically in their full form. However, there are several approximate
forms that are commonly used, including the non-accelerating flow form (in which
convective accelerations are assumed negligible) and the kinematic-wave equations
(in which gravitational and friction forces are assumed to dominate). An example
of use of the shallow-water equations in a landform evolution model can be found in
the work of T.R. Smith and colleagues. Various forms of the shallow-water equations
can often be found in hydrologic models, and sometimes in soil-erosion models (e.g.,
Mitas and Mitasova, 1998).
[Bedford et al. rill-and-pond simulation example]

5.3. Cellular Automata. Some models use cellular automaton methods to calcu-
late flow over a cellular topography. These include:

e Chase’s precipiton algorithm

e Crave-Davy modified precipiton algorithm

e Murray-Paola multiple-flow-direction river-flow algorithm

e Coulthard’s generalization of Murray-Paola for 2D flow (CAESAR model)
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5.4. Depressions in the Terrain. What happens when flow enters a topographic
depression? In the real world, three possibilities: complete evaporation/infiltration,
formation of a lake with overflow, or formation of a closed lake.

CHILD uses a lake-fill algorithm. [Animation example showing lake-fill algorithm
used to simulate fan-deltas in a subsiding marine basin]

5.5. Precipitation and Discharge.

e Water supply to channel network varies dramatically in both time and space

e Big gap in time scale between storms/floods and topographic evolution

o “Effective discharge” concept: discharge that represents the cumulative geo-
morphic effect of the natural sequence of storms and floods

e Willgoose et al. (1991): use mean peak discharge

e Huang and Niemann (2006): effective discharge not necessarily the same at
different times and places

Basically, landscape models tend to use one of four methods:

(1) Steady flow, uniform precipitation or runoff coefficient (effective discharge
concept)

(2) Steady flow, nonuniform precipitation/runoff (e.g., orographic precipitation)

(3) Stochastic-in-time, spatially uniform runoff generation

(4) “Short storms” model (S6lyom and Tucker, 2004)

We do not have time to look in detail at all of these. Instead, we will take a brief
look at the Poisson rectangular pulse model implemented in CHILD.

Visualizing a Poisson Storm Sequence.

(1) In the terminal window, navigate to the Rainfalll folder and run the input
file by typing:
../child rainfalll.in
(2) In Matlab, navigate to the Rainfalll folder
(3) In Matlab: figure(1), clf, cstormplot( ’rainfalll’ );
(4) figure(2), clf, cstormplot( ’rainfalll’, 10 );

The first plot shows a 1-year simulated storm sequence; the second shows just the
first 10 storms.

The motivation for using a stochastic flow model is (1) that nature is effectively
stochastic, and (2) variability matters when the erosion or transport rate is a non-
linear function of flow. For more on this, see Tucker and Bras (2000); Snyder et al.
(2003); Tucker (2004), and DiBiase et al. (2009).

5.6. Remarks. Landscape evolution models can be, and have been, used to study
climate impacts on erosion, topography, and mountain building. But be careful—
climate and hydrology amount to much more than a “sprinkler over the landscape.”
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6. HyDrAULIC GEOMETRY

e Channel size, shape, and roughness controls delivery of hydraulic force to the
bed and banks

e Most landscape models either implicitly assume constant width (practical but
dangerous) or use the empirical relation W = K,,Q°, where b = 0.5.

e Models with time-varying discharge must also specify how width varies at a
point along the channel as @) rises and falls.

e Width-discharge scaling is practical but incomplete, because we observe that
channels can narrow or widen downstream in concert with variations in inci-
sion rate.

e Examples from Taiwan, Italy.

e Model examples from Wobus et al. (2006), Attal et al. (2008).

e Full treatment of the channel geometry adjustment problem is a frontier area.

7. EROSION AND TRANSPORT BY RUNNING WATER

e Several competing models for erosion by channelized flow

e Detachment-limited models: assume that eroded material leaves the system
without significant re-deposition; lowering of channel limited by detachment

e Transport-limited models: assume plentiful supply of loose sediment; lowering
of channel limited capacity to transport sediment

e Simple hybrid: lowering may be limited either by excess transport capacity by
detachment rate, depending on local sediment supply and substrate resistance

e Undercapacity concept: detachment rate depends on surplus transport ca-
pacity

e Saltation-abrasion model: detachment driven by grain impacts, limited by
sediment shielding

7.1. Detachment-Limited Models. On a bed with little loose sediment, detach-
ment of particles may be driven primarily by hydraulic lift and drag (“plucking”).
Most models assume that the rate of detachment (or more generally the capacity for
detachment) depends on excess bed shear stress:

(16) D, = Ky (1 —7.)"

where 7 is local bed shear stress, 7. is a threshold stress below which detachment is
ineffective, K, is a constant, and p, is an exponent.

Bed shear stress fluctuates in space and time, but is often treated using the cross-
sectional average, which in turn is based on a force balance between gravity and
friction.
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Some models assume detachment rate depends on stream power per unit width

w=(Q/W)S:

Q
(17) D. =K, (WS — P,
Stream power per unit width turns out to be proportional to 7%/2, so the two erosion
formulas are closely related (Whipple and Tucker, 1999). In the following example,
we will use the unit stream power formula with &, = 0.

Detachment-Limited Hills and Mountains.

(1) In the terminal window, navigate to the D1im folder and run the input file by
typing:
../child dlim.in
The 3m.y. run should take about 20 seconds.
) In Matlab, navigate to the D1im folder
) In Matlab: figure(1), clf, colormap jet
) cmovie( ’dlim’, 31, 3e4, 3e4, 1e3, 500 );
) figure(2), clf
(6) csa( ’dlim’, 31 );  Shows slope-area graph

(2
(3
(4
(5

Notice that the landscape has come close to a state of equilibrium between erosion
and relative uplift. The resulting terrain has about 200m of relief over a 30km half-
width mountain range—more Appalachian than Himalayan. Notice that the log-log
slope-area graph shows a straight line, indicating a power-law relationship. This is
exactly to be expected, and we can predict the plot slope and intercept analytically.
Finally, note the points on the upper left of the graph. These “first order” cells, about
2500m? in area, have slopes less than 10%. They represent embedded channels, not
hillslopes, which are too small to resolve at this grid spacing.
Now, what happens when we increase the relative uplift rate?
(1) Run the d1imC1.in input file by typing:
../child d1imC1.in
This run starts off where the previous one ended, but with a 10x higher rate
of relative uplift.
) In Matlab: figure(1)
) cmovie( ’dlimC1’, 31, 3e4, 3e4, le4, 5000 ); 10z vertical scale
) figure(2), clf
) hold on, csa( ’dlimC1’, 31, ’r.’ ); hold off
Because we are using a slope-linear detachment law, a 10x increase in relative uplift

rate leads to a 10x increase in relief. Notice that the points have shifted upward by
a factor of 10 on the slope-area graph.

(2
(3
(4
(5
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We still do not see any hillslopes, because the scale of landscape dissection is too
fine for the model to resolve. Next, we will “zoom in” by repeating the d1im run but
with a twenty-fold decrease in domain size and model cell size.

Zooming in to the Hillslopes.
(1) Run the dlim_small.in input file by typing:
../child dlim small.in
This run is identical to d1im but with a domain of 1.5 by 1.5km and ~25m
wide cells, instead of 30x30km and ~500m cells.
) In Matlab: figure(1)
) cmovie( ’dlim small’, 31, 1.5e3, 1.5e4, 500, 200 );
) figure(2), clf
) hold on, csa( ’dlim small’, 31, ’g.’ ); hold off

Note how the hillslopes become evident in the topography. In the slope-area plot,
the points seem to continue the trend of the coarser-scale run, but somewhat shifted
upward. Can you guess why they are shifted upward? (The answer is subtle, and
lies hidden in d1im_small2.in).

For the next exercise, we return to our earlier d1imC1 run and plot a representative
stream profile at different times, to look at how the profile responds to the increased
rate of relative uplift.

(2
(3
(4
(5

Knickzones and Transient Response.

(1) In Matlab: figure(1), clf
(2) [d,h,x,y] = cstrmproseries( ’dlimC1’, 10, 15000, 29000 );
This command traces the stream profile starting from x = 15km, y = 29km.
It wnll plot the first 10 profiles.
(3) figure(2), clf, plot( x, y )
This shows the horizontal trace of the stream course.
During the period of transient response, the stream profile shows a pronounced con-
vexity, or knickzone, along the profile. The knickzone marches upstream through
time. This pattern is characteristic of the “stream power” erosion law, which is
actually a form of wave equation.

7.2. Transport-Limited Models. We next explore the dynamics of landscapes and
networks with transport-limited models. One caution as we do so: we will assume
that channel width is independent of grain size, slope, etc.

A Pile of Fine Sand.

(1) In the terminal window, navigate to the Tlim folder and run:
../child tliml.in
The 1Im.y. run should take about 2 minutes.
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) In Matlab, navigate to the Tlim folder

) In Matlab: figure(1), clf

) cmovie( ’tliml’, 21, 3e4, 3e4, 40, 10 );

) figure(2), clf

(6) csa( ’tliml’, 21 ); axis([le-1 1e3 le-4 1e-3])

In this run, we are effectively assuming that 0.1mm sand moves as bed-load, according
to a Meyer-Peter and Mueller-like transport formula. The landscape takes on an
effectively uniform and very shallow gradient, on the order of 3 x 1074

Now let’s try the same experiment with 5cm cobbles.

(2
(3
(4
(5

A Pile of Cobbles.
(1) Run:
../child tlim2.in
The 3m.y. run should take about 2-3 minutes.
(2) In Matlab: figure(1), clf
(3) cmovie( ’tlim2’, 21, 3e4, 3e4, 1000, 300 );
(4) figure(2)
(5) hold on, csa( ’tlim2’, 31, ’r.’ ); hold off

Lesson: grain size matters!

But let’s remember the caveat that channel width matters too, and we haven’t
taken that into account with these simple runs. Also, Nicole Gasparini’s work (Gas-
parini et al., 1999, 2004) tells us that channel concavity is less sensitive to grain size
when there is a mixture of sizes available to the river.

Optional exercise: Make a copy of t1im2.1in and configure it to re-start from
t1im2 but with a higher uplift rate. Use the Matlab script cstrmproseries to
plot fluvial profiles undergoing transient response. How do these compare with the
detachment-limited model?

7.3. Hybrid Model: Combining Detachment and Transport. Next, we’ll look
at a more complex situation with simultaneous erosion and sedimentation, and si-
multaneous detachment-limited and transport-limited behavior. In this case, we use
a fluvial model in which erosion rate can be limited either by transport capacity or
by detachment capacity, depending on their relative magnitudes:

QC—Z;\L Qsij if Qc—Zj-V;'l Qsij
FE;, =

< D,

(18) A A

D, otherwise
Erosion and Deposition, Together at Last.

(1) In the terminal window, navigate to the Hybrid folder and run:
../child erodepl.in
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The Im.y. run should take about 5 minutes (but of course you can peek at
earlier time steps while the run is going, by reducing the number of frames in
your movie).
(2) In Matlab: figure(1), clf
(3) cmovie( ’erodepl’, 21, 6ed, 6ed, 4000 );
Here we have a block rising at 1mm /yr and an adjacent block subsiding at 0.25mm/yr.
Uplift and subsidence shut down after 500ky. The subsiding block forms a large lake
that gradually fills in with fan-deltas.

7.4. Other Sediment-Flux-Dependent Fluvial Models.

e “Under-capacity” models (detachment rate depends on degree to which sed-
iment flux falls below transport capacity)

e Saltation-abrasion models (detachment rate driven by particle impacts, and
limited by alluvial shielding of bed)

e Gasparini et al. (2007) explore behavior of these models with CHILD simu-
lations

8. MULTIPLE GRAIN SIZES

Interesting issues regarding grain size include:
e Bed armoring and its impact on transport rates
e Downstream fining
e Abrasion and lithologic controls

9. ExoTica

e Stream meandering in the context of landscape evolution and valley stratig-
raphy (Clevis et al., 2006a,b)

e Vegetation (Collins et al., 2004; Istanbulluoglu and Bras, 2005)

e Alternate forms of mass wasting (Densmore et al., 1998; Lancaster et al.,
2003; Istanbulluoglu et al., 2005)

e Knickpoints, hanging valleys, plunge pools (Flores-Cervantes et al., 2006;
Crosby et al., 2007)

e Glaciation (Herman and Braun, 2006; Herman et al., 2007; Herman and
Braun, 2008)

10. FORECASTING OR SPECULATION?

Some mathematical models in the physical sciences have such firm foundations
that they can be relied upon to forecast the behavior of the natural world. For
example, laws of motion of objects in a vacuum are absolutely reliable (as long as
their speed is much less than that of light). The same can be said for numerical
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solutions to these equations, provided the solution is reasonably accurate. For these
kinds of model, the verb “to model” means to calculate with high reliability what
would happen under a particular set of initial and boundary conditions.

At the other end of the spectrum, we have mathematical models that are essen-
tially tentative hypotheses. Such models are often based on intuition about a physical
system, and represent a sort of educated guess about the quantitative relationships
between things. For example, when Ahnert (1976) presented his inverse-exponential
equation for regolith generation from bedrock, he was essentially expressing a concep-
tual hypothesis in mathematical terms. For these models-as-hypotheses, the phrase
“to model” means to perform a quantitative “what if” experiment, asking the ques-
tion: what kinds of pattern would I see if my hypothesis were correct? Comparing
the prediction with observations provides a test of the hypothesis.

One can find many models that fall between these extremes. There are models
that are based on well-known physics, but which are forced to use approximations
of unknown accuracy in order to solve the governing equations. For example, cli-
mate models typically use simple parameterization schemes to represent convective
mass and energy transport. Then too there are models that combine basic physi-
cal principles with elements of intuition, empiricism, and approximation. Arguably,
many sediment-transport laws fall into this category: they are based on firm me-
chanical foundations (the force balance on a sediment grain) but also rely on strong
approximations of factors like grain geometry, local flow velocity, and so on.

By now, it should be obvious that landscape evolution models also fall some-
where between the end-member cases of “model as truth” and “model as speculative
hypothesis.” As we saw on Day 1, there is a varying degree of experimental and
observational support for the individual transport, weathering and erosion laws that
go into a typical landscape model. In that sense, then, these models amount to
more than just speculation. But equally there is still an element of speculation be-
hind many of the process laws used in landscape models. Also, the process laws
and algorithms represent a significant amount of upscaling in space and (especially)
time. For example, the use of a steady precipitation rate as a proxy for the natural
sequence of flows in a river channel represents a major approximation. For these
reasons, I believe that three of the most important frontiers in landscape evolution
research are (1) continuing to test individual process laws in the field and lab, (2)
testing whole-landscape models using natural experiments, and (3) using mathemat-
ics, computation and experiments to study how the rates of various processes scale
upward in time and space, and how these can be effectively parameterized.

11. TEN COMMANDMENTS OF LANDSCAPE EVOLUTION MODELING

(1) Thou shalt not use a model without understanding the ingredients therein.
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) Be thou ever mindful of uncertainty.
) Thou shalt use thy model to develop insight.
) Thou shalt take delight when thy model surprises thee.
) Thou shalt kick thy model hard, that it may notice thee (an injunction bor-
rowed gratefully from the 10 Climate Modeling Commandments).
(6) Thou shalt diagnose the reasons for thy model’s behavior.
(7) Thou shalt conduct sensitivity experiments and “play around.”
(8) Thou shalt use thy model to discover the necessary and sufficient conditions
needed to explain thy target problem.
(9) If thou darest use a model to calculate what happened in your field area in
the past, thou shalt find a way to test and calibrate it first.
(10) If thou darest to predict future erosion, thou shalt heed the previous com-
mandment ten times over (but thou mightest point out to skeptics that a
process-based prediction is usually better than one based on pure guesswork,
provided that commandment #2 is obeyed).

(2
(3
(4
(5
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