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What are you hear for?



Outline

• Lecture (sorry)
– Outline of climate issues
– Description of downscaling methods
– Discussion of available data

• Interactive (whee)
– Login to summit
– Visualize data
– Run your own downscaling



There is no silver bullet



Extreme events are REALLY hard



What do you need from climate 
models?

• Precipitation
• Temperature
• Wind? 
• Humidity?
• Radiation?

Daily, Hourly? Sub-hourly?

1 event? 100 years? …10,000 years?





Climate Models



What will the future look like?

Warmer
Air Temperature
(2030s – 1990s)

Wetter and Drier…
Precipitation
(2030s – 1990s)



What will the future look like?
Warmer
Air Temperature
(2030 – 1995)

Wetter
And Drier…
(2030 – 1995)



What will the future look like?
Warmer
Air Temperature
(mostly)

Wetter
And Drier…
(Sometimes?)



Why Downscaling?



Importance of Mountains to Water 
Resources



What this means for precipitation
• GCMs predict too little precipitation over 

mountains

• Precipitation is generated by Convective 
parameterization instead of orographic 
processes. 



Dynamic Downscaling

• High-resolution Regional Climate 
Model

• Simulations based on atmospheric 
physics

• Computationally expensive

• Detailed Physics
– Provides greater confidence in climate 

change scenario





Hurricane Ivan (2005)
Current climate

Hurricane Ivan (Future)
warmer atmosphere

Changes in Hurricanes from a 13 Year Convection Permitting Pseudo-Global Warming Simulation, 
Gutmann et al. 2018, (Journal of Climate)     Corresponding Author: Ethan Gutmann, gutmann@ucar.edu
Analysis funded by Det Norske Veritas (DNV) and CONUS simulation by NSF under NCAR Water System Program

Hurricane Ivan
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Statistical Downscaling

• Relies on stationary 
statistical relationships

• Computationally cheap
GCM
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Precipitation Rescaling

Quantile Mapping
• Used in BCSD at a 

monthly timestep, 
low resolution

• Used in AR with a 
fit instead of a 
direct mapping, 
daily timestep
high-resolution
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Precipitation Amount Precipitation Amount

Precipitation Amount Precipitation Amount

Stoner et al (2012)

Wood et al (2004)
Thrasher et al (2013)

GCM Obs



Precipitation Analogs

Constructed Analogs
Maurer and Hidalgo (2008)

Low-resolution 
Precipitation

Downscaled 
Precipitation

Multivariate Adapted Constructed Analogs (MACA)
Abatzoglou and Brown (2012)

LOcalized Constructed Analogs (LOCA)
Pierce and Cayan (2015)



Representation of Climate Change

• Problems with historical fidelity 
aside…

• How do different methods 
represent climate change. 

• Statistical methods are almost 
identical.

• Dynamical simulation is very 
different. 

Change in March PrecipitationChange in March Temperature



A continuum of downscaling options

• Statistical downscaling based on rescaling GCM outputs
– BCSD, BCCA, AR

• Statistical downscaling based on GCM dynamics (water 
vapor, wind, convective potential, etc.)
– Regression-based methods
– Analog methods

• Sophisticated circulation methods to relate the space-
time variability of downscaled fields to synoptic scale 
atmospheric predictors (self-organized maps, etc.), 
possibly enhanced stochastically

• Dynamical downscaling using simple weather models

• Dynamical downscaling using state-of-the-art RCMsin
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A dichotomy of downscaling options
False
^



Circulation Based Example

• Rely on circulation fields
▫ Pressure, temperature, wind, 

humidity, convective potential

• More confidence in GCM outputs

• More confidence in stationary 
relationships

• Compute regression on 
similar/analog days from the past

• Sub-domain reminder (on left)



Circulation Based Example
Precipitable Water
Positively correlated everywhere

Zonal wind correlation
Positively correlated on West slopes
Negatively correlated on East slopes

Time=2

Time=6

Time=1

…

Stochastic sampling

• Training data: 
– GEFS circulation
– Maurer Precip

• Applying to GCM 
circulation (normalized)

Realistic Wet Day Fraction



January SLP SOMs

Classifying Weather Types: 

Self Organized Maps

• Exploit the natural variability of the model and in the 

natural system to cluster data

Hewitson and Crane (2002)

• Can be difficult to match 

SOMs with GCM states

See also: 

Bardossy and Plate, (1991),

Hughs and Guttorp (1995), 

Wetterhall et al., (2009)

January SLP SOMs



Potential Problems

• Statistics of GCM atmospheric variables 
may not match statistics of real world 
– e.g. dominant SOM, covariance between Q 

and U

• Often difficult to match observed 
precipitation

Langousis and Vassilios (2014)



Introducing Physics

• Early work by Sarker
(1966), Rhea (1978)

• Linear Orographic 
Precipitation model
– Smith and Barstad (2004)

• Applied to Climate 
Models and Reanalysis 
data
– Crochet et al (2007), 

Jarosch et al (2012)



Intermediate Complexity 
Atmospheric Research model (ICAR)

Identify the key physics and develop a simple model
GOAL: >90% of the information for <1% of the cost

Quasi-dynamical Downscaling

ICAR

Model Physics
High-res

Advection, 
Microphysics, 

LSM, PBL, radiation, 
convection

GCM
low-res
3D data

High-res DEM

High-res 3D 
grid

Linear 
Mountain 

Wave Theory
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ICAR Dynamics
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future investigations. Observed evidence for the downstream
wind shadows is particularly needed from both southern Norway
and similar mountains elsewhere. Observational studies should
be combined with theoretical studies to understand the dynami-
cal nature of such structures.
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8. Appendix A
A1 Linear model

The horizontal component of the linearized Boussinesq approx-
imated momentum equation may be written as

∂ u⃗
∂t

+ U⃗ · ∇H u⃗ − f k⃗ × u⃗ = − 1
ρ0

∇H p (A1)

and the vertical as
∂w
∂t

+ U⃗ · ∇H w = − 1
ρ0

∂ p
∂z

− b, (A2)

where the upper case denotes the constant background part of
the variable. The lower case denotes the perturbed part. The
variable b is the buoyancy b(x , y, z, t) = gρ ′(x , y, z, t)/ρ 0. The
rest follows standard notation. In order to get a closed system,
we add the continuity and buoyancy equation,

∇ · u⃗ = 0 (A3)

∂b
∂t

+ U⃗ · ∇H b + N 2w = 0 (A4)

and applying the linearized boundary condition, connecting the
vertical velocity (w) and the fluid displacement (η),

∂η

∂t
+ U⃗ · ∇H η = w. (A5)

We transfer the equations into Fourier space (U⃗ · ∇ → iσ ) as-
suming steady state. By using simple algebra, and solving an
ordinary differential equation, the fluid displacement becomes

η̂(k, l) = ĥeimz, (A6)

where ĥ is the Fourier transformed terrain (see Smith, 2001).
The rest of the variables in the Fourier space turn out to be

ŵ(k, l) = iσ η̂ (A7)

b̂(k, l) = N 2 η̂ (A8)

p̂(k, l) =
(

i η̂
m

)

(N 2 − σ 2) (A9)

û(k, l) = − m (σk − il f ) i η̂
k2 + l2

(A10)

v̂(k, l) = − m(σ l + ik f )i η̂
k2 + l2

, (A11)

where the non-hydrostatic vertical wave number including rota-
tion is

m2 = N 2 − σ 2

σ 2 − f 2
(k2 + l2), (A12)

σ = Uk + V l is the intrinsic frequency, (k, l) is the horizontal
wave numbers.

A2 Linearized wind speed

Dividing wind into background and perturbed parts allows us to
write the wind speed as

[(U + u)2 + (V + v)2]1/2. (A13)

Aligning the coordinate system with the background flow, V
vanishes,

[(U + u)2 + v2]1/2. (A14)

According to basic assumptions in linear theory, products of the
perturbations are neglected, so that (A14) is

linearized windspeed = (U 2 + 2U · u)1/2 ≈|U⃗ + u⃗|. (A15)

Thus, the linearized wind speed is the perturbation aligned with
the background flow, added to the background flow. The lin-
earized wind speed is always less or equal to the full nonlinear
wind speed. As the nonlinearity increases, the approximation
error in (A15) increases accordingly. For the same reason, the
linear theory becomes less accurate.
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Grubišić, V., Smith, R. B. and Schär, C. 1995. The effect of bottom
friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci.
50, 1985–2005.

Tellus 58A (2006), 1

DYNAMICAL STRUCTURES FOR SOUTHWESTERLY AIRFLOW OVER SOUTHERN NORWAY 17

future investigations. Observed evidence for the downstream
wind shadows is particularly needed from both southern Norway
and similar mountains elsewhere. Observational studies should
be combined with theoretical studies to understand the dynami-
cal nature of such structures.

7. Acknowledgments

I. Barstad has partly been supported by NSF grant ATM-
0112354. The Norwegian Research Council and NCAR/UCAR
have provided computer resources. The authors are grateful for
fruitful discussions with professor R.B Smith.

8. Appendix A
A1 Linear model

The horizontal component of the linearized Boussinesq approx-
imated momentum equation may be written as

∂ u⃗
∂t

+ U⃗ · ∇H u⃗ − f k⃗ × u⃗ = − 1
ρ0

∇H p (A1)

and the vertical as
∂w
∂t

+ U⃗ · ∇H w = − 1
ρ0

∂ p
∂z

− b, (A2)

where the upper case denotes the constant background part of
the variable. The lower case denotes the perturbed part. The
variable b is the buoyancy b(x , y, z, t) = gρ ′(x , y, z, t)/ρ 0. The
rest follows standard notation. In order to get a closed system,
we add the continuity and buoyancy equation,

∇ · u⃗ = 0 (A3)

∂b
∂t

+ U⃗ · ∇H b + N 2w = 0 (A4)

and applying the linearized boundary condition, connecting the
vertical velocity (w) and the fluid displacement (η),

∂η

∂t
+ U⃗ · ∇H η = w. (A5)

We transfer the equations into Fourier space (U⃗ · ∇ → iσ ) as-
suming steady state. By using simple algebra, and solving an
ordinary differential equation, the fluid displacement becomes

η̂(k, l) = ĥeimz, (A6)
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Barstad, I. and Grønås, S. 2005. Southwesterly flows over southern
Norway-mesoscale sensitivity to large-scale wind direction and speed.
Tellus 57A, 136–152.

Burk, S. and Thompson, H. 1989. A vertically nested regional numerical
prediction model with second-order closure physics. Mon. Wea. Rev.
117, 2305–2324.

Doyle, J. D. and Shapiro, M. A. 1999. Flow response to large-scale
topography: the Greeland tip jet. Tellus 51A, 728–748.

Eliassen, A. and Palm, E. 1960. On the transfer of energy in the stationary
mountain waves. Geofys. Publ. 22, 1–23.

Gill, A. E. 1982. Atmosphere-Ocean Dynamics. International Geo-
physics series, Academic Press, NY, 662.

Grell, G., Dudhia, J. and Stauffer, D. 1994. A Description of the Fifth-
Generation Penn State/NCAR Mesoscale Model (MM5). NCAR tech-
nical note NCAR/TNN-398+STR, Boulder, CO, U.S.A.
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Grubišić, V., Smith, R. B. and Schär, C. 1995. The effect of bottom
friction on shallow-water flow past an isolated obstacle. J. Atmos. Sci.
50, 1985–2005.

Tellus 58A (2006), 1

DYNAMICAL STRUCTURES FOR SOUTHWESTERLY AIRFLOW OVER SOUTHERN NORWAY 17

future investigations. Observed evidence for the downstream
wind shadows is particularly needed from both southern Norway
and similar mountains elsewhere. Observational studies should
be combined with theoretical studies to understand the dynami-
cal nature of such structures.

7. Acknowledgments

I. Barstad has partly been supported by NSF grant ATM-
0112354. The Norwegian Research Council and NCAR/UCAR
have provided computer resources. The authors are grateful for
fruitful discussions with professor R.B Smith.

8. Appendix A
A1 Linear model

The horizontal component of the linearized Boussinesq approx-
imated momentum equation may be written as

∂ u⃗
∂t

+ U⃗ · ∇H u⃗ − f k⃗ × u⃗ = − 1
ρ0

∇H p (A1)

and the vertical as
∂w
∂t

+ U⃗ · ∇H w = − 1
ρ0

∂ p
∂z

− b, (A2)

where the upper case denotes the constant background part of
the variable. The lower case denotes the perturbed part. The
variable b is the buoyancy b(x , y, z, t) = gρ ′(x , y, z, t)/ρ 0. The
rest follows standard notation. In order to get a closed system,
we add the continuity and buoyancy equation,

∇ · u⃗ = 0 (A3)

∂b
∂t

+ U⃗ · ∇H b + N 2w = 0 (A4)

and applying the linearized boundary condition, connecting the
vertical velocity (w) and the fluid displacement (η),

∂η

∂t
+ U⃗ · ∇H η = w. (A5)

We transfer the equations into Fourier space (U⃗ · ∇ → iσ ) as-
suming steady state. By using simple algebra, and solving an
ordinary differential equation, the fluid displacement becomes

η̂(k, l) = ĥeimz, (A6)
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the background flow, added to the background flow. The lin-
earized wind speed is always less or equal to the full nonlinear
wind speed. As the nonlinearity increases, the approximation
error in (A15) increases accordingly. For the same reason, the
linear theory becomes less accurate.

References
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future investigations. Observed evidence for the downstream
wind shadows is particularly needed from both southern Norway
and similar mountains elsewhere. Observational studies should
be combined with theoretical studies to understand the dynami-
cal nature of such structures.
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8. Appendix A
A1 Linear model

The horizontal component of the linearized Boussinesq approx-
imated momentum equation may be written as

∂ u⃗
∂t

+ U⃗ · ∇H u⃗ − f k⃗ × u⃗ = − 1
ρ0

∇H p (A1)

and the vertical as
∂w
∂t

+ U⃗ · ∇H w = − 1
ρ0

∂ p
∂z

− b, (A2)

where the upper case denotes the constant background part of
the variable. The lower case denotes the perturbed part. The
variable b is the buoyancy b(x , y, z, t) = gρ ′(x , y, z, t)/ρ 0. The
rest follows standard notation. In order to get a closed system,
we add the continuity and buoyancy equation,

∇ · u⃗ = 0 (A3)

∂b
∂t

+ U⃗ · ∇H b + N 2w = 0 (A4)

and applying the linearized boundary condition, connecting the
vertical velocity (w) and the fluid displacement (η),

∂η

∂t
+ U⃗ · ∇H η = w. (A5)

We transfer the equations into Fourier space (U⃗ · ∇ → iσ ) as-
suming steady state. By using simple algebra, and solving an
ordinary differential equation, the fluid displacement becomes

η̂(k, l) = ĥeimz, (A6)

where ĥ is the Fourier transformed terrain (see Smith, 2001).
The rest of the variables in the Fourier space turn out to be

ŵ(k, l) = iσ η̂ (A7)

b̂(k, l) = N 2 η̂ (A8)

p̂(k, l) =
(

i η̂
m

)

(N 2 − σ 2) (A9)

û(k, l) = − m (σk − il f ) i η̂
k2 + l2

(A10)

v̂(k, l) = − m(σ l + ik f )i η̂
k2 + l2

, (A11)

where the non-hydrostatic vertical wave number including rota-
tion is

m2 = N 2 − σ 2

σ 2 − f 2
(k2 + l2), (A12)

σ = Uk + V l is the intrinsic frequency, (k, l) is the horizontal
wave numbers.

A2 Linearized wind speed

Dividing wind into background and perturbed parts allows us to
write the wind speed as

[(U + u)2 + (V + v)2]1/2. (A13)

Aligning the coordinate system with the background flow, V
vanishes,

[(U + u)2 + v2]1/2. (A14)

According to basic assumptions in linear theory, products of the
perturbations are neglected, so that (A14) is

linearized windspeed = (U 2 + 2U · u)1/2 ≈|U⃗ + u⃗|. (A15)

Thus, the linearized wind speed is the perturbation aligned with
the background flow, added to the background flow. The lin-
earized wind speed is always less or equal to the full nonlinear
wind speed. As the nonlinearity increases, the approximation
error in (A15) increases accordingly. For the same reason, the
linear theory becomes less accurate.
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ICAR simulation



WRF$ SWM$
Annual$
Precip.$(mm)$
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(pre=bias$correcAon)$

ICAR Precipitation
Real Simulation

WRF and ICAR have very 
similar precipitation 
distributions. 

ICAR requires 1-0.1% of the 
computational effort of WRF. 

This enables a pseudo-
dynamical downscaling for a 
wide variety of GCM / 
scenario combinations

ICAR



Change in Climate
• Can we know?

• Need to understand 
variability

• Prefer physically intuitive 
options

• Are methods that “match” 
WRF better?

• Can we develop metrics in 
current climate
– Interannual variability?
– Interdecadal? 

February Change in Precipitation



Extreme Downscaling

• Wind patterns 
dominate snow 
processes
• Investigating New 

modeling techniques 
to enable meter scale 
CFD wind model for 
snow
• Using Lattice 

Boltzmann method to 
represent complex 
boundaries accurately

Snow Depth [m]



Simulation over Complex Terrain



Dynamical vs. Statistical Downscaling

• Computationally tractable
• Large high-resolution datasets 

available
• Consistent with observations

• May not represent climate 
change signal correctly

• Statistical nature often 
introduces artifacts

• Input data requirements

Statistical
• No stationarity assumptions
• Physically consistent across 

variables
• Representation of physical 

processes

• Computationally demanding
• Available datasets are limited 

low-resolution
• Introduces need for additional 

ensembles
• …may not represent climate 

change signal correctly

Dynamical
Pros Pros

Cons
Cons



Data Access

• Raw (non-downscaled) CMIP5 data:
– Lawrence Livermore CMIP5 Data Portal
– GCM data stumbling blocks

• Noleap calendars
• Rotated pole projections
• Seemingly arbitrary vertical coordinates

• Downscaled data
– Lawrence Livermore GDO
– USGS geodata portal
– CORDEX



Title
• text

– text

Agencies have supported development of online 
resources to assist and provide data for local 
basin studies and other users.

such as this one:
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/



Agencies have supported development of online 
resources to assist and provide data for local 
basin studies and other users.

such as this one:
http://cida.usgs.gov/gdp/

http://cida.usgs.gov/gdp/


https://rda.ucar.edu/datasets/ds612.0/



https://na-cordex.org



Downscaling Comments
• Higher-resolution does not mean more information
• Training data

– If measurements are wrong/missing, what are you downscaling to?
• Changes in the mean

– Is precipitation represented correctly in the physics?
• Mountains? Convection? Monsoons? Atmospheric Rivers? 

– Is air temperature?
• Where is the coast in the model? Snowpack? Cold air pools?

• Changes in extremes
– Statistical methods often extrapolating past anything they are 

trained on

• Evaluate different methods
– All are wrong, but some are useful
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A Dose of Humility

• There is a tendency to think 
– model agreement = model accuracy

• We all know this isn’t true
– though we like to believe it anyway

• Then how do you evaluate 
downscaling methods?



Alternative Approach(es)

• Delta change takes historical weather and perturbs 
(sensitivity test) 

+/-20% precip

+2 - +6°C

• Pseudo-Global Warming (PGW) dynamical 
downscaling vs directly downscaling
– Caution on individual extreme events and chaos

• Start with the question, can you learn something about 
expected changes in weather that can inform your 
work without downscaling/modeling? 
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Cautionary tales

Kerr et al 2011 Science Maraun et al (2017) Nature Climate Change

Statistical methods don’t add physical processes
RCMs can completely change the signal
If GCM circulation is wrong, what good is downscaling?



Evaluating Downscaling Methods
Variability and Regional Precipitation

Observed
ENSO - Precipitation

Correlation

0.3-0.3 0

Observed

CanESM2
WRF



Variability and Regional Precipitation

Observed
ENSO - Precipitation

Correlation

0.3-0.3 0

Observed

MIROC5



Variability and Regional Precipitation

Observed
ENSO - Precipitation

Correlation

0.3-0.3 0

Observed

IPSL-CM5A



• Testing the number of grid 
cells which have their most 
extreme precip in a 5yr 
period

• MOS: Frequency of 
extreme events increases 
sharply in 2005 (LOCA)

• Perfect-prog: Frequencies 
don’t change in the future 
(En-GARD)

BCSD

LOCA

Evaluating Downscaling Methods
Expected Change Signals



Practical

• Data on Blanca / Summit
• Temporary logins provided
• Code available (and pre-compiled)
• Input and Outputs available



A note on data files

• All data are in gridded NetCDF files
• NetCDF (Network Common Data Format) 
– self-describing machine independent binary 

format
• Most are CF Compliant (Climate and Forecast)
– Metadata standard
– Defines variable attributes, coordinate 

conventions



En-GARD and ICAR source code 
available

• Code is available
– ICAR: Gutmann et al (2016) JHM
– En-GARD: Gutmann et al (in prep)
– Documentation online, but feel free 

to get in touch

Funding provided by
• USACE Climate Resilience and 

Preparedness Program
• US Bureau of Reclamation
• NASA AIST
• NCAR Water System Program (NSF)



ICAR
• Data available : 
– /scratch/summit/gutmann/icar/sierras/output

• Visualize with your favorite viewer
– Python, IDL, Matlab, …
– ncview, panoply,...

• Example Input files available one level up

• Computational costs
– Currently Parallelized with OpenMP, multi-node 

parallelization nearly complete (and scales to HIGH core 
counts)



Demo



En-GARD: Ensemble Generalized 

Analog Regression Downscaling

Observed

Precipitation

“Observed”

Atmosphere

Analog 

Training Period

X C + e = Y

X = Reanalysis variables

C = Regression coefficients

e = error term

Y = Observed variable (e.g. precipitation)

Dataset

Add “e” back to quantify uncertainty. 

Use a stochastic process that maintains 

spatial-temporal correlation of residuals

Residuals of regression,

Spread in analogs, …

Modeled 

Atmosphere Time

Gutmann et al (in prep)

Clark and Hay (2004)
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http://github.com/NCAR/gard


En-GARD Exercise

• Input data available :
– /scratch/summit/gutmann/gard/colorado
Training

• ERAi ( + WRF 50km)
• Obs (Maurer 02)

GCM : 
• CCSM4 ( + WRF 50km)

• Things to test: 
– Variable selection
– Algorithm selection
– Parameter selection



Demo
ssh -Y user0060@tlogin1.rc.colorado.edu
ssh -Y scompile
sinteractive --nodes=1 --ntasks=24

module load intel
module load netcdf mkl ncview

cd /projects/${USER}
cp -r /scratch/summit/gutmann/gard/colorado/ ./
cd colorado

export OMP_NUM_THREADS=24
./gard downscale_options.txt

export PATH="/projects/gutmann/anaconda3/bin:$PATH"
./post_proc_gard.py



En-GARD Exercise Suggestions

• Start with basic simulation
– Does your output match that provided?
./gard downscaling_options.nml
./post_proc.py

• Modify one parameter
Change T2 variable to Q2 in namelist
Change pure_analog=true to false and analog_regression
from false to true
– How do individual days change? 
– How does climatology (e.g. time average) change? 
– How does the future change signal change? 

• Modify more parameters…



En-GARD Report back

• What did you change
• How did that effect the simulations? 



WRF Tutorial
http://www2.mmm.ucar.edu/wrf/OnLineTutorial/index.htm


