High Resolution Simulations of

Sediment Transport by Turbidity Currents

Eckart Meiburg UC Santa Barbara

- Motivation
- Governing equations / computational approach
- Results
 - particle driven gravity currents
 - gravity currents with erosion and resuspension
 - formation of channels, gullies, sediment waves
 - current extensions
- Summary and outlook

Coastal margin processes

Turbidity current

- Underwater sediment flow down the continental slope
- Can transport many km³ of sediment
- Can flow O(1,000)km or more
- Often triggered by storms or earthquakes
- Repeated turbidity currents in the same region can lead to the formation of hydrocarbon reservoirs
- Properties of turbidite:
 - particle layer thickness
 - particle size distribution
 - pore size distribution

Turbidity current. http://www.clas.ufl.edu/

Turbidity current (cont'd)

<u>Grand Banks turbidite</u> <u>historical event, Nov 18 1929 (M7.2)</u> Length scale = 10^6 m Grain size = $\leq 10^{-1}$ m Volume of deposit = 1.8×10^{11} m³ Re = $0 \ 10^9$ Fr = ??? Probably ≤ 2

From Piper et al., 1984

Turbidity current (cont'd)

Field data – levee complex, Maastrichtian, Baja California, Mexico

Framework: Dilute flows

Volume fraction of particles of $O(10^{-2} - 10^{-3})$ *:*

- particle radius « particle separation
- particle radius « characteristic length scale of flow
- coupling of fluid and particle motion primarily through momentum exchange, not through volumetric effects
- effects of particles on fluid continuity equation negligible

Moderately dilute flows: Two-way coupling

Mass fraction of heavy particles of O(10%), small particle inertia (e.g., sediment transport):

- particle loading modifies effective fluid density
- particles do not interact directly with each other

Current dynamics can be described by:

- *incompressible continuity equation*
- variable density Navier-Stokes equation (Boussinesq)
- conservation equation for the particle concentration field
- → don't resolve small scale flow field around each particle, but only the large fluid velocity scales ('SGS model')

Moderately dilute flows: Two-way coupling (cont'd)

$$\nabla \cdot \vec{u}_{f} = 0$$

$$\frac{\partial \vec{u}_{f}}{\partial t} + (\vec{u}_{f} \cdot \nabla) \vec{u}_{f} = -\nabla p + \frac{1}{Re} \nabla^{2} \vec{u}_{f} + c \vec{e}_{g}$$

$$\frac{\partial c}{\partial t} + [(\vec{u}_{f} + \vec{U}_{s}) \nabla] c = \frac{1}{Sc Re} \nabla^{2} c$$

$$\frac{settling}{velocity}$$

$$Re = \frac{u_b L}{\nu}$$
, $Sc = \frac{\nu}{D}$, $U_s = \frac{u_s}{u_b}$

Model problem (with C. Härtel, L. Kleiser, F. Necker)

Lock exchange configuration

Dense front propagates along bottom wall

Light front propagates along top wall

Results: 3D turbidity current – Temporal evolution

DNS simulation (Fourier, spectral element, 7x10⁷ grid points)

Necker, Härtel, Kleiser and Meiburg (2002a,b)

- turbidity current develops lobe-and-cleft instability of the front
- current is fully turbulent
- erosion, resuspension not accounted for

Results: Deposit profiles

Comparison of transient deposit profiles with experimental data of de Rooij and Dalziel (1998)

• simulation reproduces experimentally observed sediment accumulation

Filling of a minibasin (w. M. Nasr, B. Hall)

Interaction of gravity currents with submarine topography:

Results: Bottom wall shear stress

- wall shear stress distribution reflects spanwise and streamwise flow structures
- allows prediction as to where particle bed erosion may occur

Erosion, resuspension of particle bed (with F. Blanchette, M. Strauss, B. Kneller, M. Glinsky)

Experimentally determined correlation by Garcia & Parker (1993) evaluates resuspension flux at the particle bed surface as function of:

- *bottom wall shear stress*
- settling velocity
- particle Reynolds number

Here we model this resuspension as diffusive flux from the particle bed surface into the flow

Erosion, resuspension of particle bed (cont'd)

$$\begin{split} \rho_p &= 1.5g/cm^3 \ , \ r_p = 50\mu m \ , \ \nu = 10^{-6}m^2/s \\ \text{current height} &= 1.6m \\ \text{initial concentration} &= 0.5\% \\ \text{Re} &= 2,200 \ ; \end{split}$$

erosion outweighs deposition: growing turbidity current

Erosion, resuspension of particle bed (cont'd)

- multiple, polydisperse flows
- feedback of deposit on subsequent flows
- formation of ripples, dunes etc.

Formation of submarine channel-levee systems

Amazon submarine channel

Formation of submarine channel-levee systems

Monterey Canyon fan

'Flow stripping' in channel turns: lateral overflows

Secondary flow in submarine canyon bends

• creates bed shear stress that causes lateral sediment transport

Sediment wave formation by lateral overflows

• sediment waves are prime targets for oil reservoir formation

Channelization by turbidity currents: A Navier-Stokes based linear instability mechanism (with B. Hall, B. Kneller)

Field data show regularly spaced channels along the ocean floor

• *Hydrodynamic instability?*

Previous stability-oriented work

- Smith & Bretherton (1972), Izumi & Parker (1995, 2000), Imran & Parker (2000), Izumi (2004), Izumi & Fujii (2006):
 - depth averaged equations; don't capture internal velocity and concentration structure of the current, and its coupling with the sediment bed
- Colombini (1993), Colombini & Parker (1995):

- externally impose secondary flow structure on the current

Present approach

Focus on unidirectional flow some distance behind the head:

- *fully developed velocity and concentration profiles*
- consider two-dimensional, three-component perturbation flow field, allow for full two-way coupling between flow and sediment bed

Moderately dilute flows: Two-way coupling

 $\nabla \cdot \vec{u}_f = 0$

$$\frac{\partial \vec{u}_{f}}{\partial t} + (\vec{u}_{f} \cdot \nabla) \vec{u}_{f} = -\nabla p + \frac{1}{Re} \nabla^{2} \vec{u}_{f} + Gc \vec{e}_{g}$$

$$\frac{\partial c}{\partial t} + \left[\left(\vec{u}_{f} + \frac{1}{Pe} \vec{e}_{g} \right) \nabla \right] c = \frac{1}{Pe} \nabla^{2} c$$

$$\frac{settling}{velocity}$$

At surface $\eta(y,t)$ of the sediment bed: no-slip boundary conditions. $\eta(y,t)$ evolves due to: $\frac{\partial n}{\partial t}$

a) Settling of particles

$$\frac{\partial \eta}{\partial t} = w_s \, c|_{z=\eta}$$

b) Erosion of particles

$$D\frac{\partial c}{\partial n}\Big|_{z=\eta} = -\beta \tau_n \quad , \quad \frac{\partial \eta}{\partial t} = -\beta \frac{\tau_n|_{z=\eta}}{n_z}$$

Dimensionless parameters

Characteristic quantities:

$$l^* = D/w_s$$

$$u^* = u_\infty$$

$$t^* = l^*/u^*$$

$$p^* = \rho_f (u^*)^2$$

$$c^* = c_\infty$$

$$\rho^* = c_\infty (\rho_p - \rho_f)$$

Dimensionless parameters:

$$Re = \frac{u_{\infty} D}{\nu w_s} \quad , \quad Pe = \frac{u_{\infty}}{w_s}$$
$$G = \frac{c_{\infty} (\rho_p - \rho_f) g D}{\rho_f u_{\infty}^2 w_s} \quad , \quad N = \frac{\beta \nu \rho_f w_s}{D}$$

Linearization

Linearization yields generalized eigenvalue problem:

$$\begin{aligned} -\alpha V + \frac{dW}{dz} &= 0 ,\\ \sigma U + W \frac{du_o}{dz} &= \frac{1}{Re} \left(-\alpha^2 U + \frac{d^2 U}{dz^2} \right) ,\\ \sigma V &= -\alpha P + \frac{1}{Re} \left(-\alpha^2 V + \frac{d^2 V}{dz^2} \right) ,\\ \sigma W &= -\frac{dP}{dz} + \frac{1}{Re} \left(-\alpha^2 W + \frac{d^2 W}{dz^2} \right) - GC ,\\ \sigma C + W \frac{dc_o}{dz} - \frac{1}{Pe} \frac{dC}{dz} &= \frac{1}{Pe} \left(-\alpha^2 C + \frac{d^2 C}{dz^2} \right) ,\\ \sigma E &= E \frac{c_\infty}{Pe} \left. \frac{dc_o}{dz} \right|_{z=0} - EN \left. \frac{d^2 u_o}{dz^2} \right|_{z=0} + \frac{c_\infty}{Pe} C(z=0) - N \left. \frac{dU}{dz} \right|_{z=0} \\ base flow effect \qquad perturb. \qquad perturb. \\ settling \qquad shear \end{aligned}$$

with boundary conditions:

$$\begin{split} U(z=0) + E \frac{du_o}{dz} \Big|_{z=0} &= 0 ,\\ V(z=0) &= 0 ,\\ W(z=0) &= \sigma E ,\\ E \left. \frac{d^2 c_o}{dz^2} \right|_{z=0} + \frac{dC}{dz} \Big|_{z=0} &= -\frac{NPe}{c_\infty} \left(E \left. \frac{d^2 u_o}{dz^2} \right|_{z=0} + \left. \frac{dU}{dz} \right|_{z=0} \right) ,\\ U(z \to \infty) &= V(z \to \infty) = W(z \to \infty) = C(z \to \infty) = 0 . \end{split}$$

Base flow profile

Unidirectional flow some distance behind the head:

Fully developed velocity and concentration profiles:

$$u_0(z) = 1 - e^{-z/L}$$
, $c_0(z) = \frac{N P e}{L c_\infty} e^{-z} + 1$

Important parameter:

 $L = length over which u_0 decays / length over which c_0 decays$

Results: Influence of Re

Dispersion relations:

- larger Re are destabilizing
- most amplified wave number $\alpha \sim 0.25$

Results: Instability mechanism

What drives the instability?

- base flow is main driver
- perturbation concentration always stabilizing
- perturbation shear stabilizing at low Re, destabilizing at high Re

Results: Instability mechanism (cont'd)

Main criterion for instability:

L < 1

base flow shear has to decay faster than base concentration profile

- if base shear decays faster than base concentration profile:

 an upward protrusion of the sediment bed will see less shear (less erosion), but still substantial sedimentation → will grow
 a valley of the sediment bed will see higher shear (more erosion), but not much more sedimentation → will grow
- *if base shear decays more slowly than base concentration profile: perturbations will decay*

Results: Eigenfunctions

Influence of secondary flow structure:

secondary flow structure reduces shear stress at peaks, increases shear stress in valleys \rightarrow perturbation shear stress is destabilizing

Sediment wave formation by turbidity currents

Large scale wave forms at the ocean floor

- sediment waves are prime targets for oil reservoir formation
- formed by turbidity currents and bottom flows; mechanism?
- traditional assumption: lee waves, but no rigorous stability analysis available

Sediment wave formation by bottom currents

Santa Barbara channel

Sediment wave formation by bottom currents

Australian coast

Base flow profile

Unidirectional flow behind the head:

Fully developed velocity and concentration profiles:

$$u_0(z) = 1 - e^{-z/L}$$
, $c_0(z) = \frac{N P e}{L c_\infty} e^{-z} + 1$

Important parameter:

 $L = length over which u_0 decays / length over which c_0 decays$

Linear stability results

Dispersion relations:

- most amplified wave number $\alpha \sim 1.44$
- base flow has main destabilizing effect
- sediment waves migrate upstream

Field observation of sediment bed structures

Net deposition is stronger on the upstream side

upstream migration

Linear stability results

Important parameter: Richardson number

$$Ri = c_{\infty}g'D/u_{\infty}^2w_s$$

 as we increase Ri → more modes become unstable → instability is due to internal wave modes

Linear stability results

Dispersion relations:

- *'turn off' stratification: high wavenumber mode disappears* \rightarrow *linked to int. waves*
- low wavenumber mode is caused by base flow instability mechanism

Reversing buoyancy currents (with V. Birman)

- propagates along bottom over finite distance, then lifts off
- subsequently propagates along top

Gravity currents in stratified ambients (with V. Birman, B. Sutherland)

- generation of internal waves
- complex interaction of the current with the stratified ambient

Stratification: Internal wave generation

• Excitation of internal waves in the ambient fluid

Sedimentation from river plumes

Collaboration with Henniger and Kleiser (2008)

Summary

- high resolution 2D and 3D simulations of gravity currents
- *detailed information regarding sedimentation dynamics, energy budgets, mixing behavior, dissipation...*
- extension to gravity currents flowing down a slope, complex geometries, erosion and resuspension, intrusions, reversing buoyancy, submarine structures, levees
- *identify novel linear instability mechanism responsible for the formation of streamwise channels/gullies and sediment waves*