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Motivation

Governing equations / computational approach
Results

- particle driven gravity currents
- gravity currents with erosion and resuspension

- formation of channels, gullies, sediment waves

U C S B - current extensions

e Summary and outlook
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Turbidity current

« Underwater sediment flow down
the continental slope
» Can transport many km’ of
sediment
e Can flow O(1,000)km or more
* Often triggered by storms or
earthquakes
* Repeated turbidity currents in the
same region can lead to the
formation of hydrocarbon
reservoirs
 Properties of turbidite:
- particle layer thickness
- particle size distribution
- pore size distribution

Turbidity current.
http://'www.clas.ufl.edu/



Turbidity current (cont’d)
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Turbidity current (cont’d)

Field data — levee complex, Maastrichtian, Baja California,
Mexico



Framework: Dilute flows

Volume fraction of particles of O(107 - 107):

* particle radius « particle separation

* particle radius « characteristic length scale of flow

coupling of fluid and particle motion primarily through

momentum exchange, not through volumetric effects

effects of particles on fluid continuity equation negligible



Moderately dilute flows: Two-way coupling

Mass fraction of heavy particles of O(10%), small particle inertia
(e.g., sediment transport):

* particle loading modifies effective fluid density
* particles do not interact directly with each other

Current dynamics can be described by:

* incompressible continuity equation
* variable density Navier-Stokes equation (Boussinesq)
* conservation equation for the particle concentration field

— don’t resolve small scale flow field around each particle,
but only the large fluid velocity scales (‘SGS model’)



Moderately dilute flows: Two-way coupling (cont’d)
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Model problem (with C. Hartel, L. Kleiser, IF. Necker)

X l g

Lock exchange configuration v

L

Dense front propagates l
along bottom wall ;

Light front propagates
along top wall




Results: 3D turbidity current — Temporal evolution

DNS simulation (Fourier, spectral element, 7x10” grid points)

Necker, Hdartel, Kleiser and
Meiburg (2002a,b)

o turbidity current develops lobe-and-cleft instability of the front
o current is fully turbulent

* erosion, resuspension not accounted for



Results: Deposit profiles

Comparison of transient deposit profiles with experimental
data of de Rooij and Dalziel (1998)
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* simulation reproduces experimentally observed sediment accumulation



Filling of a minibasin (w. M. Nasr, B. Hall)

Interaction of gravity currents with submarine topography:




Results: Bottom wall shear stress
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* wall shear stress distribution reflects spanwise and streamwise flow structures
* allows prediction as to where particle bed erosion may occur



Erosion, resuspension of particle bed (with F. Blanchette,
M. Strauss, B. Kneller, M. Glinsky)

Experimentally determined correlation by Garcia & Parker

(1993) evaluates resuspension flux at the particle bed
surface as function of:

o bottom wall shear stress

» settling velocity
* particle Reynolds number

Here we model this resuspension as diffusive flux from the

particle bed surface into the flow



Erosion, resuspension of particle bed (cont’d)

pp = 1.5g/em3 | rp =50um , v =10"m?/s
current height = 1.6m

initial concentration = 0.5%

Re = 2,200 :

slope angle = 39 :

g ¥ 17 15 20
deposition outweighs erosion. decaying turbidity current

slope angle = 4° :

4 3 17 15 70

erosion outweighs deposition.: growing turbidity current



Erosion, resuspension of particle bed (cont ’d)

* multiple, polydisperse flows
» feedback of deposit on subsequent flows

* formation of ripples, dunes etc.
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Turbidity current/sediment bed interaction

Formation of submarine channel-levee systems

Amazon submarine channel



Turbidity current/sediment bed interaction

Formation of submarine channel-levee systems

Monterey Canyon fan



Turbidity current/sediment bed interaction

‘Flow stripping’in channel turns: lateral overflows




Turbidity current/sediment bed interaction

Secondary flow in submarine canyon bends

* creates bed shear stress that causes lateral sediment transport



Turbidity current/sediment bed interaction

Sediment wave formation by lateral overflows
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* sediment waves are prime targets for oil reservoir formation



Channelization by turbidity currents: A Navier-Stokes based
linear instability mechanism (with B. Hall, B. Kneller)

Field data show regularly spaced channels along the ocean floor

* Hydrodynamic instability?



Previous stability-oriented work

o Smith & Bretherton (1972), Izumi & Parker (1995, 2000), Imran
& Parker (2000), Izumi (2004), Izumi & Fujii (2006):

- depth averaged equations,; don t capture internal velocity and
concentration structure of the current, and its coupling with the

sediment bed

e Colombini (1993), Colombini & Parker (1995):

- externally impose secondary flow structure on the current



Present approach

Focus on unidirectional flow some distance behind the head:

*  fully developed velocity and concentration profiles

e  consider two-dimensional, three-component perturbation

flow field, allow for full two-way coupling between flow

and sediment bed



Moderately dilute flows:

Two-way coupling
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At surface n(y,t) of the sediment bed: no-slip boundary conditions.

n(v,t) evolves due to:

a)

Settling of particles

b) Erosion of particles
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Dimensionless parameters

Characteristic quantities: "

Dimensionless parameters:
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Linearization

Linearization yields generalized eigenvalue problem:
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Base flow profile

Unidirectional flow some distance behind the head:

l u . /

Fully developed velocity and concentration profiles.:
N Pe

ug(x) =1—e*t . co(z) =
Coo

e “+1

Important parameter:.

L = length over which u, decays / length over which c, decays



Results: Influence of Re

Dispersion relations:
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larger Re are destabilizing

most amplified wave number a~(0.25



Results: Instability mechanism

What drives the instability?
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* base flow is main driver
* perturbation concentration always stabilizing

» perturbation shear stabilizing at low Re, destabilizing at high Re



Results: Instability mechanism (cont’d)

Main criterion for instability:

L <1

base flow shear has to decay faster than base concentration profile

e if base shear decays faster than base concentration profile:
- an upward protrusion of the sediment bed will see less shear
(less erosion), but still substantial sedimentation — will grow
- a valley of the sediment bed will see higher shear (more erosion),

but not much more sedimentation — will grow

* if base shear decays more slowly than base concentration profile:

perturbations will decay



Results: Eigenfunctions

Influence of secondary flow structure:
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secondary flow structure reduces shear stress at peaks, increases
shear stress in valleys — perturbation shear stress is destabilizing



Sediment wave formation by turbidity currents

Large scale wave forms at the ocean floor
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* sediment waves are prime targets for oil reservoir formation
* formed by turbidity currents and bottom flows; mechanism?
* traditional assumption. lee waves, but no rigorous stability analysis available



Sediment wave formation by bottom currents
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Sediment wave formation by bottom currents
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Base flow profile
Unidirectional flow behind the head.:

Fully developed velocity and concentration profiles.:
N Pe

ug(x) =1—e*t . co(z) =
Coo

e “+1

Important parameter:.

L = length over which u, decays / length over which c, decays



Linear stability results

Dispersion relations:
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* most amplified wave number a~1.44
* base flow has main destabilizing effect

» sediment waves migrate upstream



Field observation of sediment bed structures

Net deposition is stronger on the upstream side

e
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upstream migration



Linear stability results

Important parameter: Richardson number
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* as we increase Ri — more modes become unstable — instability is due to

internal wave modes



Linear stability results

Dispersion relations:

* ‘turn off’ stratification: high wavenumber mode disappears — linked to int. waves

* low wavenumber mode is caused by base flow instability mechanism



Reversing buoyancy currents (with V. Birman)

» propagates along bottom over finite distance, then lifts off
» subsequently propagates along top



Gravity currents in stratified ambients (with V. Birman,

B. Sutherland)
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« generation of internal waves
* complex interaction of the current with the stratified ambient



Stratification: Internal wave generation
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Sedimentation from river plumes
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Collaboration with Henniger and Kleiser (2008)



Summary

high resolution 2D and 3D simulations of gravity currents

detailed information regarding sedimentation dynamics, energy
budgets, mixing behavior, dissipation...

» extension to gravity currents flowing down a slope, complex

geometries, erosion and resuspension, intrusions, reversing

buoyancy, submarine structures, levees

identify novel linear instability mechanism responsible for the

formation of streamwise channels/gullies and sediment waves



