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fluvial erosion re
layer?

Was the LGM fluvial system more top-heavy due to the
presence of an ice cap? Did this impact erosion rates?

How does the delivery of sediment to the channels by
hillslopes impact fluvial erosion rates above and below
the inversion layer?

Are the positions of the large knickpoints better
explained by stream discharge or by a stochastic
history of landsliding at the coast?




a to drive it

» Characterize glacial-interglacial changes to inversion height,
storm frequency, temperature, hydrology ...
Need: data to drive RCM with LGM boundary conditions,
e.g., GCM output

* Incorporate these changes into a LEM to model forward to
narrow down viable hypotheses before spending time and
money on field efforts
Need: hydrologic simulation that captures daily to seasonal
hydrograph, glacial-interglacial precipitation changes, and
responds to channel network evolution over ~10° yr
timescales
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* Fully-compressible, non-hydrostatic atmospheric climate
simulation

« Domain nesting for high spatial resolution driven by outer
domain simulation

« Can ingest climate model output, reanalysis data, station
observations

* CCSM output for LGM and 20th century recently
available at the needed 6-hourly output
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Assuming a steac
results than a stochastically fo

LEMs have basic hydrology, but given the same input precipitation
distributions may not properly reproduce the hydrograph - all the water
runs off instantly.

Hydrologic models can do well at the hydrograph, but run at too low a
timestep to be reasonably integrated in an LEM - more compatible with
coupling to RCM.

But drainage areas change as channels move over long timescales in
LEM, so a static discharge map won’ t do any good.

We' re going to need a statistical approach - statistics know nothing about
time.
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(Crudely after
Tucker and Bras, 2000 WRR)

The hydrographs this approach generates may or may not
be realistic for a given setting, especially when spatial
variability is important.
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Cleverly map hydro model discharge (Q) statistics into
channel network based on nominal drainage area (A), or
use with transport/erosion laws that explicitly incorporate
discharge statistics.




glacial and

-BUT -

Important scale gaps exist
between climate models,

landscape models and
hydrological models
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Until computing power allows
104-10° yr coupled runs at
Landscape Response climate-model timesteps,
bridging these gaps will involve
some form of statistical mapping




