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Primary Methods :

— 1) direct measurement on hillslopes (landslide
inventories, creep measurements, surface erosion pins and
troughs, topographic surveys and construction of sediment

budget) (1 to 100 years)

2) local cosmogenic nuclide measurement (of exposed
rock, bedrock at base of soil, sand in channels) ( typically
1 03_ 1 05 years)

— 3) sediment load of streams by direct sampling or in
reservoirs (most relevant to hillslopes in steep catchments
with little or storage; spatially averages) (1- 10’s years

— 4)catchment cosmogenic nuclide measurement (of
exposed sediment in channels) ( typically 103- 10> vears)

— 5) thermochronometry (rock samples and detrital samples;
larger spatial scale, longer time frame) (106 years)
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inferential

Little data on grain size entering channels
Rarely are measurements made to test mechanistic theories



Sediment supply, erosion, uplift,
exhumation, and denudation

Surface Uplift = Rock Uplift — Exhumation

(relative to geoid)  (relative to geoid) (relative to surface)

Common language: Erosion = Denudation = Exhumation

If Rock uplift is exactly balanced by erosion, no surface
uplift = steady state landscapes

Sediment supply is Erosion (L/t) x surface area.
Little is know about grain size....

England and Molnar, 1990,
Geology



Terminology

Weathering-limited landscapes:

erosion rate is set by the rate at which bedrock
breaks down to mobile material

Detachment- limited landscapes:

erosion rate is limited by resistance to erosion of
mobile material

Transport-limited landscapes:

erosion rate is limited by the rate of transport of
readily transportable material



What controls sediment supply to rivers in uplands
catchments?

Key concept- the hillslopes and channels are coupled.

Channel incision ultimately drives hillslope erosion, but
transients happen: for example

*pulses of channel incision

climate shifts that alter topographic-climate erosion
relationship (some call this “erosional efficiency”)

*exhumation of lithology of varying resistance to erosion



What's a hillslope?

#e— hellslope —

Elevatia,
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Valley = Convergent topography

Hillslope = Planar and divergent topography bordering
a valley (e.g. Dietrich & Montgomery, 1998)

= Landform that has statistically planar
or divergent topography



hillslope
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Slope Comparison
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Eel River (detail), CA
Shaded Relief, Cell Size: 30gm
09/04/02, Source: USGS
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Eel River (detail), CA
Shaded Relief, Cell Size: 2m
09/04/02, Source: Lidar

500 m

Scale: 1 to 20000
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A channel is a drainage feature with distinct banks.
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Channel incision drives hillslope erosion: it is the boundary condition

Soil an
saprolite

Cross section across a ridge and valley. For identical climate, vegetation, precipitation,
and rock type, the upper section is experiencing higher channel incision rates and, with
that, coarser, fresher material is entering the channel, and at a higher rate.



What controls erosion rates?
 “Tectonics” (U)
 “Topography” (T)

e “Climate” (C)
 “Lithology” (L)

 “Landuse” (Not considered here)

E=F(C,ULT)?
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NOT THIS!

Qs = sediment load (M/t)

£ 10¢
= w= a constant
3 10 Q = water discharge (km3/yr
?Z) 102 A = drainage area (kn¥)
3 Re= 0.94, n=488 R = maximum relief (km)
% 10° T = basin averaged
S . temperature ( in degrees)
a 100 - | = glacier factor
10 L= basin average lithology

10-1 100 10! 102 103 104 105 factor

Sediment Yield Observations T/km?/y T-=trapping efficiency of
=

Fig. 10 Syvitski & Milliman reservoirs

= 0.31A0.5 °
Q=B QAT RT for T22°C E, = human influence factor

Q=2 wB QY3A% R for T<2°C
Syvitski and Milliman, in

B=IL(1-Tg) E, press
This is sediment discharge to the ocean- not
sediment flux from hillslopes



Volcanic rivers
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“Tectonics”

Active (Whipple (2009: frictional narrow mountain
belts; large, hot orogens)

Hyperarid

Inactive

Let's pick a tectonic setting (rate of uplift) and look for
erosional dependency on climate, fopography and lithology

Note: “tectonics” could include earthquake-driven erosional events



Erosion rate (mm yr~")

Active tectonics and erosion
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Active tectonics and erosion
E€ U

This interaction may act through precipitation
influence on erosion.

hence

E=U=F(C)



Linkages among climate, tectonics, surface processes
and topography

Climate Surface Processes
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Effect of precipitation-driven erosion on tectonics
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Fluvial Transect Through the Massif
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Fluvial Transect Through the Namche Barwa-Gyala Peri Massif
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Fluvial Transect Through the Namche Barwa-Gyala Peri Massif
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Active tectonics and erosion

F = F(P) For 1000’s to million years time scale

= Rz M-ppt [m/
o S 5¢ ppt [miyr]
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ZFT- zircon fission track, Ar- argon dating of mica
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Average erosion rate (mm/y)

Average erosion rate (mm/y)

Active tectonics and erosion
E = F(P)
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Active tectonics and erosion

E = F(T)

DiBase et al. 2010
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Active and Hyperarid

Owen et al. GSAB 2010
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(c) arid active (e) hyperarid active
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With increasing rainfall, more runoff occurs, which cuts channels more
rapidly and drives increased hillslope erosion. Salt covered hillslopes
gives way to barren rocky surfaces and then to vegetated slopes.

Owen et al. GSAB (2010)



Seismic energy (J)

Inactive tectonics and erosion
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Inactlve tectonlcs and erosion

Erosion rate mm/yr

Rock uplift rate mm/yr

Erosio
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Idealized depth profile (km) Elevation
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Where there is a mountain
. 1 1 root, exhumation and thus

| | | erosion can drive rock uplift
through isostatic response

Willett, Annual Reviews, 2010



Sediment yield (km3Ma-")
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Inactlve tectonlcs and erosion

rate (mm year™')

Erosion

Rock uplift rate (mm year™)
o —

Idealized depth profile (km) Elevation
R [k

Distance across the orogen (km)

EF€ U
E=U=F(P)?

Where there is a mountain
root, exhumation and thus
erosion can drive rock uplift
through isostatic response

Lack of strong correlation with
contemporary precipitation is argued to be
due to: 1) the uplift/exhumation being
driven by Pleistocene glaciation patterns,
2) longer time scale response of earlier
increase in precipitation

Willett, Annual Reviews, 2010



Tectonics sets the pace of landscape evolution

“Inactive”

Geologic history (deep time) leads to legacy geology that

strongly influences current landscapes

N gem '?

NN
A0

N
D =
>
~ 7
NN
* N
3\\< N
N

REGION
% Sgdimentary covers outside
ield exposures

Continental shelf ondwana shields

Active
mountains

active mountains

I:] Laurasian shields

ediment shed from Ol

system remnakits

gest
“basement”

areas

@ Rifted shield area

Isolated volcanic

Major oceanic rifts
and transform faults

Undersea axial
« » connections of the
Alpine system

Old,\no longer
active mountains



Geochronology of the Ausfralian Cenozoic 887
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fission-track thermochronology Kohn et al. 2002 reported in Vasconcelos et a. 2008
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Fig. 11. Average erosion rate plotted against the climate
zone characterizing each field site and labelled with the
field site represented. A, arid (KC, Kings Canyon); SA,
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year time scale erosion— perhaps due to missing rare erosion events.



VON BLANCKENBURG ET AL.: WEATHERING AND EROSION IN SRI LANKA
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Final Comments

1) Cosmogenic radionuclides and low temperature
thermochronology provide estimates of sediment supply to
rivers. But these measures tell us very little about the size of
sediment being supplied

2) Direct measurement of sediment transport in rivers are

influenced by short period of observation and transient
conditions due to Holocene climate change and landuse

effects.

3) Sediment supply (erosion from upland hillslopes) over the
longer time scale is driven by tectonics and climate, and
controlled by topography and lithology (ignoring landuse
effects).

4) Efforts to find correlation between erosion and tectonics,
topography, climate and lithology have had mixed-success.

5) The drivers and controls are not well defined.



6) All such studies need to be placed in a tectonic and
climate history framework

7) Active orogenic belts, E ~U , but £ = F'(P) . Local
“aneurysm” may occur.

8) Hyperarid to semiarid, E = F(P).

9) Erosion generally correlates non-linearly with various
measures of slope and relief.

10) Tectonically inactive areas show long-time scale erosional
response to changes in climate

11) Erosion varies over about 6 orders of magnitude. Passive
margin, cratonic areas typically eroding 1-10 m/my and

collision tectonic areas typically eroding at 1000- 5000 m/
my



