DROG3D

User’s Manual for 3-Dimensional Drogue Tracking on a

Finite Element Grid with Linear Finite Elements.

written by

Brian O. Blanton

Ocean Processes Numerical Methods Laboratory
Curriculum in Marine Science
University of North Carolina at Chapel Hill
15 - 1 Venable Hall
CB #3300
Chapel Hill, NC 27599-3300

Release 95.1
Spring 1995

email: blanton@marine.unc.edu

Contents
1 Introduction

2 Source codes, input and output files
2.1 Stepstorun DROG3D e
2.2 File Naming Convention

23 UNITS © oo

3 DROG3D Input Files Structure
3.1 COMMON_BLOCK.h e d e e
3.2 The .gr2 file and connect2d.fo
3.3 The .dinfile o
3.4 The welfile o 0 e

4 Output files .pth and .diag
5 Acknowledgements
Appendix - Test Case

A Appendix - Test Case
A1 Domain and Setup L
A2 Results o e

NN NN N

O ot = W W

11

11

12

1 Introduction

This document describes the implementation of DROG3D, Release 95.1, a 3-dimensional
particle tracking algorithm written in FORTRAN 77. It builds on previous documents
and code versions and is not intended to be “backward compatible” with the earlier releases.
DROG3D tracks passive drogues with given harmonic velocity field(s) in a 3-D finite element
mesh. The (z,y) elements are linear triangular elements; the interpolation in the vertical is
also linear.

Earlier releases of DROG3D allowed the inclusion of multiple frequencies per simula-
tion. Release 95.1 is enhanced to allow the simulation of multiple legs, each with multiple
frequencies, enabling for example the computation of particle trajectories within evolving
seasonal-mean or monthly-mean flow fields in one run. Thus, if flow fields corresponding
to monthly variations in wind forcing are available, Release 95.1 of DROG3D will read in
those files and compute particle trajectories using the sequence of flow fields specified by
the user in a single .din file. Each set of velocity components and time parameters, called
a “leg”, is run sequentially. The code internally updates velocity fields at the conclusion
of the current leg. This obviates the need for the user to externally create a new .din file,
with the final drogue positions from the previous leg as starting positions for the next leg,
and then restart the code using the new input parameters. The multiple-leg specification of
input information occurs in the .din file and is described on pages 5-8 of this document.

2 Source codes, input and output files

The files provided in this distribution are:

connect2d. f
DROG3D.f

INPUT.f
SUBROUTINES.f
oOUTPUT.f
ZPOSITION.f
COMMON_BLOCK.h
Makefile

The user must provide:

.nod - node-list file

.ele - element-list file

.gr2 - domain information file

.din - tracking run parameters file

wel - velocity components file(s)
Output files are:

.pth - drogue path file

Jdiag - diagnostic report file

2.1 Steps to run DROG3D

To run DROG3D (ensure COMMON_BLOCK.h is in the same directory as codes):

1. generate .gr2 file using connect2d. f

2. compile DROG3D with Makefile; type “make DROG3D”
3. specify run parameters in .din file
4

. tun DROG3D; the executable is named DROG3D

2.2 File Naming Convention

In the text that follows, the convention used when referring to, for example, the file X.gr2
is that it has a filename X and a filetype .¢gr2.

2.3 UNITS

DROG3D makes no assumption about the unit system used to compute the velocity fields
or to track drogues. Scaling factors for node coordinates, drogue positions, and velocities
are provided in the .din file in case of unit mismatch between any variables. Thus, if all
variables are MKS, the scaling factors are all 1.

2

3 DROG3D Input Files Structure

There is one include file needed by DROG3D at compile-time:

o COMMON_BLOCK.h - array dimension include file

There are three run-time input files to DROG3D, each having a unique suffix.
1. .gr2 - File describing finite-element domain; generated by connect2d. f;
2. .din - File containing run parameters and initial drogue positions;

3. .vel - File containing velocity components for entire domain at each node.

Upon execution of DROG3D, the user is prompted ONLY for the filename of the .din
file; i.e., if the input file is casel.din, type only casel. The .din file contains the name of
the .vel files to be used in the run, all scaling factors for coordinates and velocities, and
time parameters describing the particular tracking run. The name of the .din file may be
any alphanumeric sequence shorter than 72 characters. The first record of each .vel file is
expected to contain the name of the finite element grid on which the velocities were computed
and thus DROG3D opens the appropriate .gr2 file.

3.1 COMMON_BLOCK.h

The file COMMON_BLOCK .h is an include file that contains array initialization parame-
ters for DROG3D. Tt must be located in the same directory in which DROG3D is compiled.

The following parameters are set in this include file (distribution values are in ()):

ND - max number of horizontal nodes (4000)

NNE - max number of horizontal elements (7000)

NLVL - max number of vertical levels (21)

NLD - max number of land boundaries; not used by code at present (1)
NFR - max number of velocity components per leg (2)

NDROG - max number of drogues in tracking run (1500)
NLEG - max number of legs to be run (5)

3.2 The .gr2 file and connect2d.f

connect2d.f is a pre-processing program that generates the .¢gr2 file, which contains all
domain (z,y) node coordinates and element connectivity information. connect2d.f prompts
the user for a filename containing horizontal node coordinates and for a filename containing
the nodes that comprise each element (an element list). It then prompts the user for the
name of the finite element grid on which the velocity fields were computed. This filename of
the .¢gr2 file MUST match the domain name specified in the first record of the velocity files.

connect2d. f must be run before DROG3D, but need only be run once for each domain
used. All vertical node information is contained in the velocity files, including the number
of vertical nodes, and is thus not part of the .gr2 file (see the .vel filetype description).

The FORTRAN statements that connect2d.f uses to input the node-coordinate file are
as follows:

DO I=1,NMND
READ(8,* ,END=24) N,XND(N),YND(N)
END DO

where N is the node number, XND and YND are arrays containing - and y coordinates of
node N, and NMND is the number of nodes in the node file. The FORTRAN statements

that connect2d. f uses to input the element-list file are as follows:

DO I=1,NMEL
READ(9,*,END=75) IE,ELEMS(IE,1),ELEMS(IE,2),ELEMS(IE,3)
END DO

where IE is the element number, the matrix ELEMS is a list of the three nodes which
comprise each element, and NMEL is the number of elements in the element file. The node
numbering for each element is expected to be in counterclockwise order. Both formats above
conform to Numerical Methods Laboratory: Memorandum on Data File Standards for the

Gulf of Maine Project, March 29, 1993, by Christopher Naimie.

3.3 The .din file

The .din file is created by the user and contains all velocity component information and
tracking parameters for all legs, scaling factors (for velocities, nodes and drogues), error
criteria, and initial drogue coordinates. The specific format of each line in the .din file is
given on pages 7-8. Most records in the .din file are preceded by one comment line describing
the information to follow. Although the specific words in the comment line are unimportant,
the code DOES expect the comment to be there. The first record of the .din file is a comment
line, followed by the number of legs (nleg) in the tracking run. Then, FOR EACH LEG, the

following structure is expected:

o A comment line denoting the leg number for the following information;

e A line giving leg number (lgn), run length (¢path) in hours, start time (¢start) in hours,
the number of time steps in the leg (ntint), and the number of velocity components in
this leg (ncomp). See NOTE below;

e ncomp lines naming the velocity components for this leg;

e ncomp lines giving the “on/off” index indcomp and six scaling factors for each compo-
nent specified. If indcomp = 0, the component will not be used in the computation.

The names of the velocity components can contain a valid path, absolute from / (root) or
relative to the current working directory, to the file. Once the list of velocity files is read
in and before execution of the first leg begins, a check is made to find the specified files. If
any files are not found, the code stops and reports the missing files to the .diag file. This
prevents the premature termination of a run due to a non-existent velocity file, the cause
usually being incorrect spelling. This check is for the existence of the files only, not for the
correctness of the content of the files.

Each remaining line in the .din file specifies information pertaining to all legs. The
variable iprint denotes how often to report drogue position information to the .pth file. If
iprint is set to 10 then every tenth timestep is output. Scaling factors for the horizontal
and vertical node locations and the (z,y,z) starting positions for all drogues should be set
to 1.0 unless there is unit mismatch between grid coordinates and drogue positions. The
horizontal and vertical errors should be in grid coordinate units, and the minimum timestep
dtmin must be in hours.

NOTE: The specification of tpath and ntint allows DROG3D to compute the timestep as
tpath/ntint. In a multiple-leg run, the timestep for the entire run is calculated from tpath
and ntint as specified for the first leg. The remaining legs MUST have timesteps equal, to
the fourth decimal place, to the timestep calculated for the first leg. If this is NOT the case,
the code stops immediately and reports the leg number and problem to the .diag file. This
check has been implemented to ensure that the time interval between outputs of the drogue
tracks, as specified by iprint, remains constant between legs.

A 2-leg example of the .din file follows. In the first leg, there are two velocity components
(two .vel files), compl and comp2. Both files reside in the current working directory. Leg
2 has one component, called comp3, in the directory /users/john_doe/velocities. The
comments in () below should NOT appear in a real .din file.

Specify number of legs in run (comment line)

2 (nleg)

LEG 1 PARAMETERS (leg 1 comment line)

1 1.0 00 10 2 (Ign, tpath, tstart, ntint, ncomp)
compl (velocity component list for leg 1)
comp?2

1 1.0 1.0 1.0 1.0 1.0 1.0 (index and scaling factors for compl)
1 1.0 1.0 1.0 1.0 1.0 1.0 (index and scaling factors for comp2)
LEG 2 PARAMETERS (leg 2 comment line)

2 1.0 1.0 10 1 (Ign, tpath, tstart, ntint, ncomp)
/users/john_doe/velocities/comp3 (velocity component list for leg 2)

1 1.0 1.0 1.0 1.0 1.0 1.0 (index and scaling factors for comp3)
END OF LEG INFORMATION (end of leg comment line)

Specify iprint, the number of timesteps between outputs

1

Scaling factors for grid in x,y,z directions

1.00 1.00 1.00

Specify horizontal error, vertical error, and minimum time step in hours
0.10 0.01 0.01

Specify scaling factors for drogue coordinates in x,y,z directions

1.00 1.00 1.00

Specify number of starting drogues, ndr

1

Specify ndr starting positions (x,y,z)

25000. -99000. -5.

The following is a complete outline for the sample .din file and the FORTRAN READ

statements from INPUT.f. Refer to the previous example .din file for comparison:

comment - comment for number of legs; not used in computations

READ (11,’a’) COMMENT

nleg - number of legs in tracking run

READ (11,%) NLEG

comment - leg number 1 comment; not used in computations

READ (11,’a’) COMMENT

lgn tpath tstart,ntint,ncomp - leg number,
tracking length of leg 1 (hours),
time at start of leg 1 (hours),
number of time steps in leg 1,
number of velocity components in leg 1

READ (11,*) LGN, TPATH, TSTART,NTINT,NCOMP

vellist - velocity file list for leg 1
READ (11,’0’) VELLIST(LGN,J) J=1 TO NCOMP

indcomp,scampu,scphau,scampv,scphav,scampw,scphaw
- velocity scaling factors
READ (11,%) INDCOMP,SCAMPU,SCPHAU,SCAMPV,SCPHAV,
SCAMPW,SCPHAW

comment - leg number 2 comment; not used in computations

READ (11,’a’) COMMENT

lgn tpath tstart,ntint,ncomp - leg number,
tracking length of leg 2 (hours),
time at start of leg 2 (hours),
number of time steps in leg 2,
number of velocity components in leg 2

READ (11,*) LGN, TPATH, TSTART,NTINT,NCOMP

vellist - velocity file list for leg 2
READ (11,’0’) VELLIST(LGN,J) J=1 TO NCOMP

indcomp,scampu,scphau,scampv,scphav,scampw,scphaw
- velocity scaling factors
READ (11,%) INDCOMP,SCAMPU,SCPHAU,SCAMPV,SCPHAV,
SCAMPW,SCPHAW

comment - END OF LEG INFORMATION comment; not used in computations
READ (11,’a’) COMMENT

comment - descriptor for iprint; not used in computations

READ (11,’a’) COMMENT

iprint - output interval

READ (11,%) IPRINT

comment - descriptor for domain scaling; not used in computations

READ (11,’a’) COMMENT

scndx,scndy,sendz - node coordinate scaling factors

READ (11,*%) SCNDX,SCNDY,SCNDZ

comment - descriptor for run parameters; not used in computations

READ (11,’a’) COMMENT

epshor,epsvert,dtmin - error values, minimum timestep increment

READ (11,*%) EPSHOR,EPSVERT,DTMIN

comment - descriptor for drogue scaling factors; not used in computations

READ (11,’a’) COMMENT

scdrx,scdry,scdrz - drogue units scaling factors

READ (11,*) SCDRX,SCDRY,SCDRZ

comment - descriptor for number of drogues; not used in computations

READ (11,’a’) COMMENT

ndr - # of drogues at beginning of track
READ (11,%) NDR

comment - descriptor for drogue coordinates; not used in computations

READ (11,’a’) COMMENT

xdr(i),ydr(i),zdr(i) - initial #,y,2 coordinates of drogue i
READ (11,*) XDR(I),YDR(I),ZDR(I) I=1 TO NDR

3.4 The .vel file

The file suffixed .vel contains flow field information for each domain node for one velocity

component. The general velocity components (u,v,w) are obtained from

u = Re[A,e@!=9)]
= Re[A,e“1=9)]
w = Re[A,e“=%)]

where A,, A, and A,, are amplitudes, w is a frequency, and ¢,, ¢, and ¢,, are phases.

The first record of the .vel file states the .¢gr2 filename of the finite element grid on
which the velocities were calculated. Next is an alphanumeric description of the velocity
component which follows. This is read as a comment line. The number of vertical nodes,
nnwv, is on the third line of the file. The number of components in this velocity file is next.
This number is always 1 and although it is read in by DROG3D, it is not used by the
tracking code. The fifth record is the frequency of the velocity component, in radians/sec.
(If the period of a component is oo, then the frequency should be entered as 1.e-10 on this
line.) Fach remaining line of the .vel file contains a node number, the depth at that node,
and the amplitudes and phases for the (u,v,w) components at that node, as follows:

nn Z(nn,nnv) Au(nn,nnv) ¢u(nn,nnv) Av(nn,nnv) ¢v(nn,nnv) Aw(nn,nnv) ¢w(nn,nnv)
nn Z(nn,nnv—l) Au(nn,nnv—l) ¢u(nn,nnv—1) Av(nn,nnv—l) ¢v(nn,nnv—1) Aw(nn,nnv—l) ¢w(nn,nnv—1)

nn Z(nn,2) Au(nn,?) ¢u(nn,2) Av(nn,?) ¢v(nn,2) Aw(nn,Q) ¢w(nn,2)
nn Z(nn,l) A Aw(nn,l) ¢w(nn,1)
where nn is the horizontal node number and nnv is the number of vertical nodes at each
horizontal node location. See the READ statements on page 10 for the expected format.

DROG3D assumes that there are the same number of vertical nodes under each surface
(z,y) node, regardless of the total depth. It is not necessary that vertical nodes be equally
spaced under each surface node. The number of nodes in the vertical, nnv, and wu,v,w
components of each frequency are required for all nodes. DROG3D expects to read the
amplitudes and phases for all vertical nodes under each surface node and the depth at that
particular node. NOTE: The code also expects that the velocity components of the bottom-
most level will be read first, and progress upward toward the surface under each surface node
(zis positive upward with z=-h at the bottom).

The following FORTRAN statements show the assumed .vel file structure for velocity

input:

READ(10,’a’)GRIDNAME

READ(10,’a’)HEADER

READ (10, *)NNV

READ(10,*) IFREQ

READ(10,*)FREQ

DO 66 I = 1,NMND

DO 67 K = 1,NNV
READ (10,*) NNO,DEP,

+ AX,PX,
+ AY,PY,
+ AZ,PZ

DEPTH(I,K)=DEP*SCNDZ
AMPX (I,K,NFQT)=AX*SCAMPU
AMPY (I,K,NFQT)=AY*SCAMPV
AMPZ (I ,K,NFQT)=AZ*SCAMPW
PHIX(I,K,NFQT)=PX*SCPHAU
PHIY(I,K,NFQT)=PY*SCPHAV
PHIZ(I,K,NFQT)=PZ*SCPHAW

67 CONTINUE

66 CONTINUE

loop over horizontal node
loop through vertical nodes
read depth, velocity components

scale according to factors

where nmnd is the number of (z,y) nodes, nnov is the number of vertical nodes, and dep
is the depth at node ilevel k. The outer loop scans over the horizontal node (i counter), the
inner loop reads the velocity information for all nodes under i, where k=1 (one) indicates
the bottom level, and nnv is the surface level.

10

4 Output files .pth and .diag

The output file suffixed .pth has the same filename as the .din file specified by the user.
The first record is the finite element grid name on which the velocity fields were computed.
Then, a complete echo of the .din file follows. A flag, "XXXX, is then written to delimit
the drogue tracks from the .din file echo. The next record contains the number of output
timesteps, the total tracking length in seconds, and the number of drogues initially located
within the domain. Output to the .pth file after this record occurs only in the subroutine
OUTPUT.f. The user may want to restructure the present format in this subroutine.

Currently, a 4-column matrix is output. The first three columns represent the (z,y,2)
coordinates of each drogue at each output timestep as specified by iprint. The fourth column
is the bottom depth at the drogue’s (z,y) position. For example, if 10 drogues are initially
located within the domain, the first 10 rows of the matrix are initial positions of the 10
drogues. The next 10 rows are the positions after iprint timesteps, until the final output.

The output file suffixed .diag also has the same name as the input .din name. Its first
record is the name of the .din file used for the current run. The parameter values specified in
the COMMON _BLOC K.hinclude file are then reported. Tracking parameters for the entire
run are written to the .diag file, as well as leg-specific parameters and run-time diagnostic
information of the DROG3D run, including messages regarding drogue encounters with the
bottom and drogue elimination through a horizontal boundary. The last record of the .diag
file, upon successful completion of the tracking run, reports the total number of drogues
eliminated during all legs of the run.

Drogues are never allowed to exit through the bottom of the domain. If a drogue pen-
etrates the bottom, the time remaining in the current timestep is determined, and, based
on the bottom velocities of the current element j, the drogue’s position at the end of the
step is projected. The drogue is placed at the bottom normal to its projected position. This
relocation of the drogue continues until it no longer hits the bottom.

DROG3D computes the vertical position of each drogue at each timestep in the subrou-
tine ZPOSITION. By default, this subroutine returns the new vertical position based on
the vertical velocities at the current position of the drogue. This is considered completely
passive tracking. ZPOSITION also includes code to demonstrate a simple vertical be-
havior. The behavioral function is commented out upon distribution of DROG3D and is
documented in comment lines in the subroutine ZPOSTTION.

5 Acknowledgements

Support for the preparation of this document and 3-D coding was provided by National
Science Foundation Grant numbers OCE-9013887 and OCE-9018388.

11

A Appendix - Test Case

A.1 Domain and Setup

A simple test case is provided in the DROG3D distribution. The test mesh is described by
a 16-node .nod file and a 16-element .ele file. The figure below shows a plot of the test mesh.
Element numbers appear in italics in the center of each element. Node numbers appear in
normal text near the node.

10 9
_90} 11 |
13 12
14 10
i 16 8
E _og5l 16 11 |
X
14 13| 18 15 9 7 6
4 3 6 8
1 2 5 7
-100 R
1 2 3 4 5
20 30 40
km

Two test case velocities are provided. The first component is called test0f.vel and is
a O-frequency, 1. m/s amplitude wind to the northeast. The second component is called
testm2.vel and is an M2-period, unit amplitude, tide. The phases are:

¢u:0 ¢u:% QSwZO

The velocity scaling factors in the test.din input file scale the unit amplitudes to magni-
tudes appropriate for the given domain.

The test.din file is a sample input file for DROG3D. Tt provides information for a
tracking run with the following parameters:

o 2 legs
o 2 drogues

e output every timestep

The first leg is 124.2 hrs (10 M2 periods) and the timestep is .2484 hrs (12.42/50). It
includes both velocity components. The 0-frequency component is scaled to 1. em/sec in
both w and v and to 0. in w. The M2 component is scaled to 10. ¢m/sec in u and v and to
0. in w.

12

The second leg uses only the northeast wind, 0-frequency component, with scaling in u to
1. em/sec and in v to -1. em/sec. This scaling generates a wind in the southeast direction,
although the velocity file contains a wind to the northeast. The duration of leg 2 is the same
as leg 1, but the starting time is 124.2 hrs.

To run the test case, the user must first compile connect2d.f by typing make conn2d
at the UNIX prompt, and then run conn2d to generate the .gr2 file. Next, the user must
compile DROG3D, using the Make file provided. Type make DROG3D at the UNIX prompt.
Make sure that the include file COMMON_BLOCK.h resides in the same directory as
the Makefile and DROG3D source codes. This should be the case immediately after
distribution. The dimensions set in COMMON_BLOCK.h are sufficient for running the

test case.

Finally, the user should execute the tracking algorithm by typing DROG3D at the UNIX
prompt. The code queries the user for the name of the .din file to run. The user should
enter test.

A.2 Results

The resulting files test.pth and test.diag will be output to the current working directory.
The trajectories of the two drogues should be as follows:

Drogue 1: Leg 1 conditions will move drogue 1 the to the northeast in a spiraling manner,
due to the influence of the m2 component, for 10 m2 periods. Leg 2 will then
move the drogue to the southeast for another 10 M2 periods but without the M2
component.

Drogue 2: Drogue 2 is placed near enough to a boundary that leg 1 conditions will move the
drogue through the northern boundary at time 4.3404 days. Drogue 2 follows the
same motion as Drogue 1, displaced to the northeast, until it exits the domain
near node 10 during leg 1. The drogue does not re-enter the tracking at the start
of leg 2.

The following figure shows a plot of the drogue trajectories within the domain boundary.

-1001 7

20 30 40
km

13

