
I. Portable, Extensible Toolkit for
Scientific Computation

Boyana Norris
(representing the PETSc team)

Mathematics and Computer Science Division

Argonne National Laboratory, USA
March, 2009

1

What is PETSc?

  A freely available and supported research code
  Download from http://www.mcs.anl.gov/petsc
  Hyperlinked manual, examples, and manual pages for all routines
  Hundreds of tutorial-style examples, many are real applications
  Support via email: petsc-maint@mcs.anl.gov
  Usable from C, C++, Fortran 77/90, and Python

2

What is PETSc?

 Portable to any parallel system supporting MPI,
 including:

–  Tightly coupled systems
•  Blue Gene/P, Cray XT4, Cray T3E, SGI Origin, IBM SP, HP 9000, Sub Enterprise

–  Loosely coupled systems, such as networks of workstations
•  Compaq,HP, IBM, SGI, Sun, PCs running Linux or Windows, Mac OS X

 PETSc History
–  Begun September 1991
–  Over 20,000 downloads since 1995 (version 2), currently 300 per

month

 PETSc Funding and Support
–  Department of Energy

•  SciDAC, MICS Program, INL Reactor Program
–  National Science Foundation

•  CIG, CISE, Multidisciplinary Challenge Program

3

1991 1993 1995 1996 2000 2001 2003
2006

Non-LANS
Team and Active Developers

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation.

We want to experiment with different
•  Models
•  Discretizations
•  Solvers
•  Algorithms (which blur these boundaries)

Successfully Transitioned from Basic
Research to Common Community Tool
  Applications of PETSc

–  Nano-simulations (20)
–  Biology/Medical(28)
–  Cardiology
–  Imaging and Surgery
–  Fusion (10)
–  Geosciences (20)
–  Environmental/Subsurface Flow (26)
–  Computational Fluid Dynamics (49)
–  Wave propagation and the Helmholz equation (12)
–  Optimization (7)
–  Other Application Areas (68)
–  Software packages that use or interface to PETSc (30)
–  Software engineering (30)
–  Algorithm analysis and design (48)

6

Who Uses PETSc?

  Computational Scientists
–  PyLith (TECTON), Underworld, Columbia group

  Algorithm Developers
–  Iterative methods and Preconditioning researchers

  Package Developers
–  SIPs, SLEPc, TAO, MagPar, StGermain, Dealll

7

The Role of PETSc

 Developing parallel, nontrivial PDE solvers that deliver high
performance is still difficult and requires months (or even years) of
concentrated effort.

 PETSc is a tool that can ease these difficulties and reduce the
development time, but it is not a black-box PDE solver, nor a silver
bullet.

8

Features

 Many (parallel) vector/array operations
  Numerous (parallel) matrix formats and operations
  Numerous linear solvers
  Nonlinear solvers
  Limited ODE integrators
  Limited parallel grid/data management
  Common interface for most DOE solver software

9

Structure of PETSc

10

Computation and Communication Kernels

MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

Application Codes

Matrices, Vectors, Indices
 Grid

Management

Linear Solvers

Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators
 Visualization

Interface

PETSc Structure

Level of
Abstraction

Interfaced Packages

  LU (Sequential)
–  SuperLU (Demmel and Li, LBNL), ESSL (IBM), Matlab, LUSOL (from

MINOS - Michael Saunders, Stanford), LAPACK, PLAPACK (van de
Geijn, UT Austin), UMFPACK (Timothy A. Davis)

  Parallel LU
–  SuperLU_DIST (Demmel and Li, LBNL)
–  SPOOLES (Ashcroft, Boeing, funded by ARPA)
–  MUMPS (European)
–  PLAPACK (van de Geijn, UT Austin)

  Parallel Cholesky
–  DSCPACK (Raghavan, Penn. State)
–  SPOOLES (Ashcroft, Boeing, funded by ARPA)
–  PLAPACK (van de Geijn, UT Austin)

11

Interfaced Packages

  XYTlib – parallel direct solver (Fischer and Tufo, ANL)
  SPAI – Sparse approximate inverse (parallel)

–  Parasails (Chow, part of Hypre, LLNL)
–  SPAI 3.0 (Grote/Barnard)

  Algebraic multigrid
–  Parallel BoomerAMG (part of Hypre, LLNL)
–  ML (part of Trilinos, SNL)

  Parallel ICC(0) – BlockSolve95 (Jones and Plassman, ANL)
  Parallel ILU

–  BlockSolve95 (Jones and Plassman, ANL)
–  PILUT (part of Hypre, LLNL)
–  EUCLID (Hysom – also part of Hypre, ODU/LLNL)

  Sequential ILUDT (SPARSEKIT2- Y. Saad, U of MN)

12

Interfaced Packages

  Parititioning
–  Parmetis
–  Chaco
–  Jostle
–  Party
–  Scotch

 ODE integrators
–  Sundials (LLNL)

  Eigenvalue solvers
–  BLOPEX (developed by Andrew Knyazev)

  FFTW
  SPRN

13

Child Packages of PETSc

  SIPs - Shift-and-Invert Parallel Spectral Transformations
  SLEPc - scalable eigenvalue/eigenvector solver packages.
  TAO - scalable optimization algorithms
  veltisto (“optimum”)- for problems with constraints which are time-

independent PDEs.

  All have PETSc’s style of programming

14

What Can We Handle?

  PETSc has run problem with 500 million unknowns
–  http://www.scconference.org/sc2004/schedule/pdfs/pap111.pdf

  PETSc has run on over 6,000 processors efficiently
–  ftp://info.mcs.anl.gov/pub/tech_reports/reports/P776.ps.Z

  PETSc applications have run at 2 Teraflops
–  LANL PFLOTRAN code

  PETSc also runs on your laptop

  Only a handful of our users ever go over 64 processors

15

Modeling of Nanostructured Materials

16

*

S
ystem

 size

A
ccuracy

Example 1:

Matrices are

 large: ultimate goal
 50,000 atoms with electronic structure
 ~ N=200,000

 sparse:
 non-zero density -> 0 as N increases

 dense solutions are requested:
 60% eigenvalues and eigenvectors

Dense solutions of large sparse problems!

17

DFTB-eigenvalue problem is distinguished by

  (A, B) is large and sparse
 Iterative method

  A large number of eigensolutions (60%) are requested
 Iterative method + multiple shift-and-invert

  The spectrum has
 - poor average eigenvalue separation O(1/N),
 - cluster with hundreds of tightly packed eigenvalues
 - gap >> O(1/N)
 Iterative method + multiple shift-and-invert + robusness

  The matrix factorization of (A-σB)=LDLT :
not-very-sparse(7%) <= nonzero density <= dense(50%)
Iterative method + multiple shift-and-invert + robusness + efficiency

  Ax=λBx is solved many times (possibly 1000’s)
 Iterative method + multiple shift-and-invert + robusness + efficiency

 + initial approximation of eigensolutions
18

Software Structure

19

MPI

PETSc

SLEPc

MUMPS

ARPACK

Shift-and-Invert Parallel Spectral Transforms (SIPs)

•  Select shifts

•  Bookkeep and validate eigensolutions

•  Balance parallel jobs

•  Ensure global orthogonality of eigenvectors

•  Manage matrix storage

FACETS: Framework Application for
Core-Edge Transport Simulations

  https://facets.txcorp.com/facets
  PI: John Cary, Tech-X Corporation

 Goal: Providing modeling of a fusion device
from the core to the wall

  TOPS Emphasis in FACETS

–  Incorporate TOPS expertise in scalable nonlinear
algebraic solvers into the base physics codes that
provide the foundation for the coupled models

–  Study mathematical challenges that arise in
coupled core-edge and transport-turbulence
systems

20

IU
NYU

Lodestar

The edge-plasma region is a key component to
include for integrated modeling of fusion devices

  Edge-pedestal temperature has large
impact on fusion gain

  Plasma exhaust can damage walls
  Impurities from wall can dilute core fuel

and radiate substantial energy

21

2D mesh for DIII-D

UEDGE is a 2D plasma/neutral transport code

•  Features of UEDGE
–  Physics:
•  Multispecies plasma; var. ni,e, u||i,e, Ti,e for particle

density, parallel momentum, and energy balances
•  Reaction-diffusion-convection type eqstions
•  Reduced Navier-Stokes or Monte Carlo for wall-

recycled/sputtered neutrals
•  Multi-step ionization and recombination

–  Numerics:
•  Finite-volume discretization
•  Preconditioned Newton-Krylov implicit solver
•  Non-orthogonal mesh for fitting divertor
•  Steady-state or time dependent
•  Parallel version
•  PYTHON or BASIS scripting control

22

•  T. D. Rognlien and M. E. Rensink, Edge-Plasma Models and Characteristics for Magnetic Fusion Energy Devices, Fusion Engineering and
Design, 60: 497-514, 2002.
•  T. D. Rognlien, D. D. Ryutov, N. Mattor, and G. D. Porter, Two-Dimensional Electric Fields and Drifts Near the Magnetic Separatrix in Divertor
Tokamaks, Physics of Plasmas, 6 (5): 1851-1857, 1999.
•  T. D. Rognlien, X. Q. Xu, and A. C. Hindmarsh, Application of Parallel Implicit Methods to Edge-Plasma Numerical Simulations, Journal of
Computational Physics, 175: 249-268, 2002.

References:

Outline

 Overview of PETSc
–  Linear solver interface: KSP
–  Nonlinear solver interface: SNES
–  Profiling and debugging

 Ongoing research and developments

23

The PETSc Programming Model

  Distributed memory, “shared-nothing”
•  Requires only a standard compiler
•  Access to data on remote machines through MPI

  Hide within objects the details of the communication

  User orchestrates communication at a higher abstract level than
direct MPI calls

24
PETSc Structure

Getting Started

PetscInitialize();

ObjCreate(MPI_comm,&obj);

ObjSetType(obj,);

ObjSetFromOptions(obj,);

ObjSolve(obj,);

ObjGetxxx(obj,);

ObjDestroy(obj);

PetscFinalize()

25
Integration

PETSc Numerical Components

26

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other
Index Sets (IS)

Vectors (Vec)

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers (SNES)

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others

Preconditioners (PC)

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers (TS)

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Krylov Subspace Methods (KSP)

Matrices (Mat)

Distributed Arrays(DA)

Matrix-free

Linear Solver Interface: KSP

27

PETSc

Application
Initialization Evaluation of A and b Post-

Processing

Solve
Ax = b PC

Linear Solvers (KSP)

PETSc code User code

Main Routine

solvers:
linear beginner

Setting Solver Options at Runtime

 -ksp_type [cg,gmres,bcgs,tfqmr,…]
 -pc_type [lu,ilu,jacobi,sor,asm,…]

 -ksp_max_it <max_iters>
 -ksp_gmres_restart <restart>
 -pc_asm_overlap <overlap>
 -pc_asm_type [basic,restrict,interpolate,none]
 etc ...

28

solvers:
linear beginner

1
intermediate

2

1

2

Recursion: Specifying Solvers for Schwarz
Preconditioner Blocks
  Specify KSP solvers and options with “-sub” prefix, e.g.,

–  Full or incomplete factorization
•  -sub_pc_type lu
•  -sub_pc_type ilu -sub_pc_ilu_levels <levels>

–  Can also use inner Krylov iterations, e.g.,
•  -sub_ksp_type gmres -sub_ksp_rtol <rtol>
•  -sub_ksp_max_it <maxit>

29

solvers: linear:
preconditioners beginner

Flow of Control for PDE Solution

30

PETSc code User code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC
PETSc

Main Routine

Linear Solvers (KSP)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

PETSc Structure

Example (UEDGE): Solve F(u) = 0

31

Post-
Processing

Application
Initialization Function

Evaluation

Jacobian
Evaluation

PETSc

Nonlinear Solvers (SNES)

PETSc
code

Application
code

UEDGE finite differencing Jacobian for
preconditioning matrix; PETSc code for
matrix-free Jacobian-vector products

Matrices Vectors

Krylov Solvers Preconditioners

GMRES

TFQMR

BCGS

CGS

BCG

Others…

ASM

ILU

B-Jacobi

SSOR

Multigrid

Others…

AIJ

B-AIJ

Diagonal

Dense

Matrix-free

Others…

Sequential

Parallel

Others…

UEDGE Driver + Timestepping

Algorithms
and data
structures
originally
employed
by UEDGE

Nonlinear Solver Interface: SNES

Goal: For problems arising from PDEs,
support the general solution of F(u) = 0

User provides:
–  Code to evaluate F(u)
–  Code to evaluate Jacobian of F(u) (optional)

•  or use sparse finite difference approximation
•  or use automatic differentiation
–  AD support via collaboration with P. Hovland and B. Norris
–  Coming in next PETSc release via automated interface to

ADIFOR and ADIC (see http://www.mcs.anl.gov/autodiff)

32

solvers:
nonlinear

SNES: Review of Basic Usage

 SNESCreate() - Create SNES context
 SNESSetFunction() - Set function eval. routine
 SNESSetJacobian() - Set Jacobian eval. routine
 SNESSetFromOptions() - Set runtime solver options

 for [SNES,SLES, KSP,PC]
 SNESSolve() - Run nonlinear solver
 SNESView() - View solver options

 actually used at runtime
 (alternative: -snes_view)

 SNESDestroy() - Destroy solver

33

solvers:
nonlinear

Uniform access to all linear and nonlinear
solvers

 -ksp_type [cg,gmres,bcgs,tfqmr,…]
 -pc_type [lu,ilu,jacobi,sor,asm,…]
 -snes_type [ls,…]

 -snes_line_search <line search method>
 -sles_ls <parameters>
 -snes_convergence <tolerance>
 etc...

34

solvers:
nonlinear

1

2

PETSc Programming Aids

  Correctness Debugging
–  Automatic generation of tracebacks
–  Detecting memory corruption and leaks
–  Optional user-defined error handlers

  Performance Profiling
–  Integrated profiling using -log_summary
–  Profiling by stages of an application
–  User-defined events

35
Integration

Ongoing Research and Developments

  Framework for unstructured meshes and functions defined over
them

  Framework for multi-model algebraic system

  Bypassing the sparse matrix memory bandwidth bottleneck
–  Large number of processors (nproc =1k, 10k,…)
–  Peta-scale performance

  Parallel Fast Poisson Solver

 More TS methods
 …

36

Framework for Meshes and Functions
Defined over Them

 The PETSc DA class is a topology and discretization
interface.
–  Structured grid interface

• Fixed simple topology
–  Supports stencils, communication, reordering

•  Limited idea of operators

 The PETSc Mesh class is a topology interface
–  Unstructured grid interface

• Arbitrary topology and element shape
–  Supports partitioning, distribution, and global orders

37

 The PETSc DM class is a hierarchy interface.
–  Supports multigrid

• DMMG combines it with the MG
preconditioner

–  Abstracts the logic of multilevel methods

 The PETSc Section class is a function interface
–  Functions over unstructured grids

• Arbitrary layout of degrees of freedom
–  Supports distribution and assembly

38

Parallel Data Layout and Ghost Values:
Usage Concepts

 Structured
–  DA objects

 Unstructured
–  VecScatter objects

 Geometric data
 Data structure creation
 Ghost point updates
 Local numerical

computation

39

Mesh Types Usage Concepts

 Managing field data layout and required ghost values
is the key to high performance of most PDE-based
parallel programs.

data layout important concepts

Distributed Arrays

40

Proc 10

Proc 0 Proc 1 Proc 0 Proc 1

Star-type
stencil

data layout:
distributed arrays

Data layout and ghost values

Full toroidal geometry is typically used, but initial
parallel UEDGE tests with PETSc in equivalent slab

 Outer midplane/
divertor regions
are mapped to an
equivalent slab

  Same features
such as closed
and open B-field
lines, private flux
region, and
divertor recycling
are retained

41

Creating a DA

DACreate2d(comm, wrap, type, M, N, m, n, dof, s, lm[], ln[],
*da)

wrap: Specifies periodicity
DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, …

type: Specifies stencil
DA_STENCIL_BOX, DA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
s: The stencil width
lm/ln: Alternative array of local sizes

42

Ghost Values

43

Local node

data layout

To evaluate a local function f(x) , each process requires
•  its local portion of the vector x
•  its ghost values – bordering portions of x owned by neighboring processes.

Communication and Physical Discretization

44
data layout

Communication
Data Structure

Creation
Ghost Point

Data Structures
Ghost Point

Updates

Local
Numerical

Computation
Geometric

Data

DA
AO

DACreate() DAGlobalToLocal()
Loops over
I,J,K
indices

stencil
[implicit]

VecScatter
AO VecScatterCreate() VecScatter() Loops over

entities

elements
edges

vertices
unstructured meshes

structured meshes 1

2

A DA is more than a Mesh

A DA contains
 topology, geometry, and an implicit Q1 discretization

It is used as a template to create
 Vectors (functions)
 Matrices (linear operator)

45

Creating the Mesh

  Generic object
–  MeshCreate()
–  MeshSetMesh()

  File input
–  MeshCreatePCICE()
–  MeshCreatePyLith()

  Generation
–  MeshGenerate()
–  MeshRefine()
–  ALE: :MeshBuilder::createSquareBoundary

  Representation
–  ALE::SieveBuilder::buildTopology()
–  ALE::SieveBuilder::buildCoordinates()

  Partitioning and distribution
–  MeshDistribute()
–  MeshDistributeByFace()

46

Parallel Sieves

 Sieves use names, not numberings
–  Numberings can be constructed on demand

 Overlaps relate names on different processes
–  An overlap can be encoded by a Sieve

 Distribution of a Section pushes forward along the
Overlap
–  Sieves are distributed as “cone” sections

47

Sections associate data to submeshes

 Name comes from section of a fiber bundle
–  Generalizes linear algebra paradigm

 Define restrict(), update()
 Define complete()
 Assembly routines take a Sieve and several

Sections
–  This is called a Bundle

48

Section Types
Section can contain arbitrary values
 C++ interface is templated over value type
 C interface has two value types

–  SectionReal
–  SectionInt

Section can have arbitrary layout
 C++ interface can place unknowns on any Mesh entity (Sieve

point)
–  Mesh::setupField() parametrized by Discretization and

BoundaryCondition

 C interface has default layouts
–  MeshGetVertexSectionReal()
–  MeshGetCellSectionReal()

49

Section Assembly

First we do local operations:
–  Loop over cells
–  Compute cell geometry
–  Integrate each basis function to produce an element

vector
–  Call SectionUpdateAdd()

Then we do global operations:
–  SectionComplete() exchanges data across overlap

• C just adds nonlocal values (C++ is flexible)

–  C++ also allows completion over arbitrary overlap

50

Framework for
Multi-model Algebraic System

~petsc/src/snes/examples/tutorials/ex31.c,
ex32.c

http://www-unix.mcs.anl.gov/petsc/petsc-as/snapshots/
petsc-dev/tutorials/multiphysics/tutorial.html

51

Framework for Multi-model Algebraic System
 ~petsc/src/snes/examples/tutorials/ex31.c

A model "multi-physics" solver based on the Vincent Mousseau's reactor core
pilot code:

There are three grids

52

DA1

DA2

DA3

Fluid

Thermal conduction

(cladding and core)

Fission (core)

/* Create the DMComposite object to manage the three grids/physics. */
DMCompositeCreate(app.comm,&app.pack);
DACreate1d(app.comm,DA_XPERIODIC,app.nxv,6,3,0,&da1);
DMCompositeAddDA(app.pack,da1);
DACreate2d(app.comm,DA_YPERIODIC,DA_STENCIL_STAR,…,&da2);
DMCompositeAddDA(app.pack,da2);
DACreate2d(app.comm,DA_XYPERIODIC,DA_STENCIL_STAR,…,&da3);
DMCompositeAddDA(app.pack,da3);

/* Create the solver object and attach the grid/physics info */
DMMGCreate(app.comm,1,0,&dmmg);
DMMGSetDM(dmmg,(DM)app.pack);
DMMGSetSNES(dmmg,FormFunction,0);

/* Solve the nonlinear system */
DMMGSolve(dmmg);

/* Free work space */
DMCompositeDestroy(app.pack);
DMMGDestroy(dmmg);

53

/* Unwraps the input vector and passes its local ghosted pieces into the user
function */

FormFunction(SNES snes,Vec X,Vec F,void *ctx)
…
DMCompositeGetEntries(dm,&da1,&da2,&da3);
DAGetLocalInfo(da1,&info1);

/* Get local vectors to hold ghosted parts of X;
 then fill in the ghosted vectors from the unghosted global vector X */
DMCompositeGetLocalVectors(dm,&X1,&X2,&X3);
DMCompositeScatter(dm,X,X1,X2,X3);

/* Access subvectors in F - not ghosted and directly access the memory
locations in F */

DMCompositeGetAccess(dm,F,&F1,&F2,&F3);

/* Evaluate local user provided function */
FormFunctionLocalFluid(&info1,x1,f1);
FormFunctionLocalThermal(&info2,x2,f2);
FormFunctionLocalFuel(&info3,x3,f3);
…

54

Bypassing the Sparse Matrix Memory
Bandwidth Bottleneck

•  Newton-multigrid provides
–  good nonlinear solver
–  easy utilization of software libraries
–  low computational efficiency

•  Multigrid-Newton provides
–  good nonlinear solver
–  lower memory usage
–  potential for high computational efficiency
–  requires “code generation/in-lining”

55

  Parallel Fast Poisson Solver

 More TS methods

 …

56

57

How will we solve numerical applications
 in 20 years?

•  Not with the algorithms we use today?

•  Not with the software (development) we use
today?

How Can We Help?

 Provide documentation:

–  http://www.mcs.anl.gov/petsc

 Quickly answer questions

 Help install

 Guide large scale flexible code development

 Answer email at petsc-maint@mcs.anl.gov

58

