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What is PETSc? 

  A freely available and supported research code 
  Download from http://www.mcs.anl.gov/petsc 
  Hyperlinked manual, examples, and manual pages for all routines 
  Hundreds of tutorial-style examples, many are real applications 
  Support via email: petsc-maint@mcs.anl.gov 
  Usable from C, C++, Fortran 77/90, and Python 
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What is PETSc? 

 Portable to any parallel system supporting MPI,  
    including: 

–  Tightly coupled systems 
•  Blue Gene/P, Cray XT4, Cray T3E, SGI Origin, IBM SP, HP 9000, Sub Enterprise 

–  Loosely coupled systems, such as networks of workstations 
•  Compaq,HP, IBM, SGI, Sun, PCs running Linux or Windows, Mac OS X 

 PETSc History 
–  Begun September 1991 
–  Over 20,000 downloads since 1995 (version 2), currently 300 per 

month 

 PETSc Funding and Support 
–  Department of Energy 

•  SciDAC, MICS Program, INL Reactor Program 
–  National Science Foundation 

•  CIG, CISE, Multidisciplinary Challenge Program 

3 



1991          1993            1995  1996      2000   2001   2003             
2006 

Non-LANS 
Team and Active Developers 



How did PETSc Originate? 

PETSc was developed as a Platform for 
Experimentation. 

We want to experiment with different 
•  Models 
•  Discretizations 
•  Solvers 
•  Algorithms (which blur these boundaries) 



Successfully Transitioned from Basic 
Research to Common Community Tool  
  Applications of PETSc 

–  Nano-simulations (20) 
–  Biology/Medical(28) 
–  Cardiology 
–  Imaging and Surgery 
–  Fusion (10) 
–  Geosciences (20) 
–  Environmental/Subsurface Flow (26) 
–  Computational Fluid Dynamics (49) 
–  Wave propagation and the Helmholz equation (12) 
–  Optimization (7) 
–  Other Application Areas  (68) 
–  Software packages that use or interface to PETSc (30) 
–  Software engineering (30) 
–  Algorithm analysis and design (48) 
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Who Uses PETSc? 

  Computational Scientists 
–  PyLith (TECTON), Underworld, Columbia group 

  Algorithm Developers 
–  Iterative methods and Preconditioning researchers 

  Package Developers 
–  SIPs, SLEPc, TAO, MagPar, StGermain, Dealll 
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The Role of PETSc 

 Developing parallel, nontrivial PDE solvers that deliver high 
performance is still difficult and requires months (or even years) of 
concentrated effort. 

 PETSc is a tool that can ease these difficulties and reduce the 
development time, but it is not a black-box PDE solver, nor a silver 
bullet. 
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Features 

 Many (parallel) vector/array operations 
  Numerous (parallel) matrix formats and operations 
  Numerous linear solvers 
  Nonlinear solvers 
  Limited ODE integrators 
  Limited parallel grid/data management 
  Common interface for most DOE solver software 
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Structure of PETSc 

10 

Computation and Communication Kernels

MPI, MPI-IO, BLAS, LAPACK


Profiling Interface


Application Codes


Matrices, Vectors, Indices
 Grid

Management


Linear Solvers

Preconditioners + Krylov Methods


Nonlinear Solvers


ODE Integrators
 Visualization


Interface 

PETSc Structure 

Level of  
Abstraction 



Interfaced Packages 

  LU (Sequential) 
–  SuperLU (Demmel and Li, LBNL), ESSL (IBM), Matlab, LUSOL (from 

MINOS - Michael Saunders, Stanford), LAPACK, PLAPACK (van de 
Geijn, UT Austin), UMFPACK (Timothy A. Davis)  

  Parallel LU 
–  SuperLU_DIST (Demmel and Li, LBNL) 
–  SPOOLES (Ashcroft, Boeing, funded by ARPA) 
–  MUMPS (European) 
–  PLAPACK (van de Geijn, UT Austin) 

  Parallel Cholesky  
–  DSCPACK (Raghavan, Penn. State) 
–  SPOOLES (Ashcroft, Boeing, funded by ARPA) 
–  PLAPACK (van de Geijn, UT Austin) 
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Interfaced Packages 

  XYTlib – parallel direct solver (Fischer and Tufo, ANL)  
  SPAI – Sparse approximate inverse (parallel) 

–  Parasails (Chow, part of Hypre, LLNL) 
–  SPAI 3.0 (Grote/Barnard) 

  Algebraic multigrid 
–  Parallel BoomerAMG (part of Hypre, LLNL) 
–  ML (part of Trilinos, SNL) 

  Parallel ICC(0) – BlockSolve95 (Jones and Plassman, ANL) 
  Parallel ILU  

–  BlockSolve95 (Jones and Plassman, ANL) 
–  PILUT (part of Hypre, LLNL) 
–  EUCLID (Hysom – also part of Hypre, ODU/LLNL) 

  Sequential ILUDT (SPARSEKIT2- Y. Saad, U of MN) 
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Interfaced Packages 

  Parititioning 
–  Parmetis 
–  Chaco 
–  Jostle 
–  Party 
–  Scotch 

 ODE integrators 
–  Sundials (LLNL) 

  Eigenvalue solvers  
–  BLOPEX (developed by Andrew Knyazev)  

  FFTW 
  SPRN 
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Child Packages of PETSc 

  SIPs - Shift-and-Invert Parallel Spectral Transformations 
  SLEPc - scalable eigenvalue/eigenvector solver packages. 
  TAO - scalable optimization algorithms 
  veltisto (“optimum”)- for problems with constraints which are time-

independent PDEs.  

  All have PETSc’s style of programming 
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What Can We Handle? 

   PETSc has run problem with 500 million unknowns 
–  http://www.scconference.org/sc2004/schedule/pdfs/pap111.pdf 

   PETSc has run on over 6,000 processors efficiently 
–  ftp://info.mcs.anl.gov/pub/tech_reports/reports/P776.ps.Z 

   PETSc applications have run at 2 Teraflops 
–  LANL PFLOTRAN code 

   PETSc also runs on your laptop 

   Only a handful of our users ever go over 64 processors 
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Modeling of Nanostructured Materials 
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Matrices are 

 large: ultimate goal  
  50,000 atoms with electronic structure 
   ~ N=200,000 

 sparse: 
 non-zero density -> 0 as N increases 

 dense solutions are requested:  
 60% eigenvalues and eigenvectors 

Dense solutions of large sparse problems! 
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DFTB-eigenvalue problem is distinguished by 

  (A, B) is large and sparse 
 Iterative method  

  A large number of eigensolutions (60%) are requested 
 Iterative method + multiple shift-and-invert 

  The spectrum has  
 - poor average eigenvalue separation O(1/N),  
 - cluster with hundreds of tightly packed eigenvalues 
 - gap >> O(1/N) 
 Iterative method + multiple shift-and-invert + robusness 

  The matrix factorization of (A-σB)=LDLT : 
not-very-sparse(7%) <= nonzero density   <= dense(50%)                                  
Iterative method + multiple shift-and-invert + robusness + efficiency 

  Ax=λBx is solved many times (possibly 1000’s) 
  Iterative method + multiple shift-and-invert + robusness + efficiency 

                                 + initial approximation of eigensolutions 
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Software Structure 
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MPI 

PETSc 
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Shift-and-Invert Parallel Spectral Transforms (SIPs) 

•  Select shifts 

•  Bookkeep and validate eigensolutions 
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•  Ensure global orthogonality of eigenvectors 

•  Manage matrix storage                  



FACETS: Framework Application for 
Core-Edge Transport Simulations  

  https://facets.txcorp.com/facets 
  PI:  John Cary, Tech-X Corporation 

 Goal:  Providing modeling of a fusion device 
from the core to the wall 

  TOPS Emphasis in FACETS 

–  Incorporate TOPS expertise in scalable nonlinear 
algebraic solvers into the base physics codes that 
provide the foundation for the coupled models 

–  Study mathematical challenges that arise in 
coupled core-edge and transport-turbulence 
systems 
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The edge-plasma region is a key component to 
include for integrated modeling of fusion devices 

  Edge-pedestal temperature has large 
impact on fusion gain 

  Plasma exhaust can damage walls 
  Impurities from wall can dilute core fuel 

and radiate substantial energy 
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UEDGE is a 2D plasma/neutral transport code 

•  Features of UEDGE 
–  Physics: 
•  Multispecies plasma; var. ni,e, u||i,e, Ti,e  for particle 

density, parallel momentum, and energy balances 
•  Reaction-diffusion-convection type eqstions 
•  Reduced Navier-Stokes or Monte Carlo for wall-

recycled/sputtered neutrals 
•  Multi-step ionization and recombination 

–  Numerics: 
•  Finite-volume discretization 
•  Preconditioned Newton-Krylov implicit solver 
•  Non-orthogonal mesh for fitting divertor 
•  Steady-state or time dependent 
•  Parallel version 
•  PYTHON or BASIS scripting control  
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Outline 

 Overview of PETSc 
–  Linear solver interface: KSP 
–  Nonlinear solver interface: SNES 
–  Profiling and debugging  

 Ongoing research and developments  
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The PETSc Programming Model 

  Distributed memory, “shared-nothing” 
•  Requires only a standard compiler  
•  Access to data on remote machines through MPI 

  Hide within objects the details of the communication 

  User orchestrates communication at a higher abstract level than 
direct MPI calls 
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Getting Started 

PetscInitialize(); 

ObjCreate(MPI_comm,&obj);

ObjSetType(obj, );

ObjSetFromOptions(obj, );


ObjSolve(obj, );

ObjGetxxx(obj, );


ObjDestroy(obj);

PetscFinalize()
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PETSc Numerical Components 

26 

Compressed 
Sparse Row 

(AIJ) 

Blocked Compressed 
Sparse Row 

(BAIJ) 

Block 
Diagonal 
(BDIAG) 

Dense Other 

Indices Block Indices Stride Other 
Index Sets (IS) 

Vectors (Vec) 

Line Search Trust Region 

Newton-based Methods 
Other 

Nonlinear Solvers (SNES) 

Additive 
Schwartz 

Block 
Jacobi Jacobi ILU ICC LU 

(Sequential only) Others 

Preconditioners (PC) 

Euler Backward 
Euler 

Pseudo Time 
Stepping Other 

Time Steppers (TS) 

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other 

Krylov Subspace Methods (KSP) 

Matrices (Mat) 

Distributed Arrays(DA) 

Matrix-free 



Linear Solver Interface: KSP 
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Setting Solver Options at Runtime 

 -ksp_type  [cg,gmres,bcgs,tfqmr,…] 
 -pc_type  [lu,ilu,jacobi,sor,asm,…] 

 -ksp_max_it  <max_iters> 
 -ksp_gmres_restart  <restart> 
 -pc_asm_overlap  <overlap> 
 -pc_asm_type  [basic,restrict,interpolate,none] 
 etc ... 
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Recursion: Specifying Solvers for Schwarz  
Preconditioner Blocks 
  Specify KSP solvers and options with “-sub” prefix, e.g., 

–  Full or incomplete factorization 
•  -sub_pc_type lu 
•  -sub_pc_type ilu  -sub_pc_ilu_levels <levels> 

–  Can also use inner Krylov iterations, e.g., 
•  -sub_ksp_type  gmres  -sub_ksp_rtol <rtol>  
•  -sub_ksp_max_it <maxit> 
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Flow of Control for PDE Solution 
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Example (UEDGE):    Solve F(u) = 0 
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Nonlinear Solver Interface: SNES 

Goal:  For problems arising from PDEs,  
support the general solution of  F(u) = 0  

User provides: 
–  Code to evaluate F(u) 
–  Code to evaluate Jacobian of F(u) (optional) 

•  or use sparse finite difference approximation 
•  or use automatic differentiation  
–  AD support via collaboration with P. Hovland and B. Norris 
–  Coming in next PETSc release via automated interface to 

ADIFOR and ADIC (see http://www.mcs.anl.gov/autodiff) 
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SNES:  Review of Basic Usage 

 SNESCreate( )   - Create SNES context 
 SNESSetFunction( )   - Set function eval. routine 
 SNESSetJacobian( )   - Set Jacobian eval. routine  
 SNESSetFromOptions( )  - Set runtime solver options   

        for [SNES,SLES, KSP,PC] 
 SNESSolve( )   - Run nonlinear solver 
 SNESView( )   - View solver options   

         actually used at runtime 
        (alternative: -snes_view) 

 SNESDestroy( )   - Destroy solver 
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Uniform access to all linear and nonlinear 
solvers 

 -ksp_type [cg,gmres,bcgs,tfqmr,…] 
 -pc_type [lu,ilu,jacobi,sor,asm,…] 
 -snes_type [ls,…] 

 -snes_line_search <line search method> 
 -sles_ls <parameters> 
 -snes_convergence <tolerance> 
 etc... 
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PETSc Programming Aids 

  Correctness Debugging 
–  Automatic generation of tracebacks 
–  Detecting memory corruption and leaks 
–  Optional user-defined error handlers  

  Performance Profiling 
–  Integrated profiling using -log_summary 
–  Profiling by stages of an application 
–  User-defined events  
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Ongoing Research and Developments 

  Framework for unstructured meshes and functions defined over 
them  

  Framework for multi-model algebraic system 

  Bypassing the sparse matrix memory bandwidth bottleneck 
–  Large number of processors (nproc =1k, 10k,…) 
–  Peta-scale performance 

  Parallel Fast Poisson Solver 

 More TS methods 
 … 
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Framework for Meshes and Functions 
Defined over Them 

 The PETSc DA class is a topology and discretization 
interface. 
–  Structured grid interface 

• Fixed simple topology 
–  Supports stencils, communication, reordering 

•  Limited idea of operators 

 The PETSc Mesh class is a topology interface 
–  Unstructured grid interface 

• Arbitrary topology and element shape 
–  Supports partitioning, distribution, and global orders 
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 The PETSc DM class is a hierarchy interface. 
–  Supports multigrid 

• DMMG combines it with the MG 
preconditioner 

–  Abstracts the logic of multilevel methods 

 The PETSc Section class is a function interface 
–  Functions over unstructured grids 

• Arbitrary layout of degrees of freedom 
–  Supports distribution and assembly 

38 



Parallel Data Layout and Ghost Values:  
Usage Concepts 

 Structured 
–  DA objects 

 Unstructured 
–  VecScatter objects 

 Geometric data 
 Data structure creation 
 Ghost point updates 
 Local numerical 

computation 
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Mesh Types Usage Concepts 

    Managing field data layout and required ghost values 
is the key to high performance of most PDE-based 
parallel programs. 

data layout important concepts 



Distributed Arrays 
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Proc 10 

Proc 0 Proc 1 Proc 0 Proc 1 

Star-type  
stencil 

data layout: 
distributed arrays 

Data layout and ghost values 



Full toroidal geometry is typically used, but initial 
parallel UEDGE tests with PETSc in equivalent slab 

 Outer midplane/ 
divertor regions 
are mapped to an 
equivalent slab 

  Same features 
such as closed 
and open B-field 
lines, private flux 
region, and 
divertor recycling 
are retained 
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Creating a DA 

DACreate2d(comm, wrap, type, M, N, m, n, dof, s, lm[], ln[], 
*da) 

wrap: Specifies periodicity 
DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, … 

type:  Specifies stencil 
DA_STENCIL_BOX, DA_STENCIL_STAR 

M/N: Number of grid points in x/y-direction 
m/n:  Number of processes in x/y-direction 
s:       The stencil width 
lm/ln: Alternative array of local sizes 
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Ghost Values  
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Local node 

data layout 

To evaluate a local function  f(x) , each process requires 
•  its local portion of the vector x 
•  its ghost values – bordering portions of x owned by neighboring processes. 



Communication and Physical Discretization 
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A DA is more than a Mesh 

A DA contains  
 topology, geometry, and an implicit Q1 discretization 

It is used as a template to create 
 Vectors (functions) 
 Matrices (linear operator) 
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Creating the Mesh 

  Generic object 
–  MeshCreate() 
–  MeshSetMesh() 

  File input 
–  MeshCreatePCICE() 
–  MeshCreatePyLith() 

  Generation 
–  MeshGenerate() 
–  MeshRefine() 
–  ALE: :MeshBuilder::createSquareBoundary 

  Representation 
–  ALE::SieveBuilder::buildTopology() 
–  ALE::SieveBuilder::buildCoordinates() 

  Partitioning and distribution 
–  MeshDistribute() 
–  MeshDistributeByFace() 
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Parallel Sieves 

 Sieves use names, not numberings 
–  Numberings can be constructed on demand 

 Overlaps relate names on different processes 
–  An overlap can be encoded by a Sieve 

 Distribution of a Section pushes forward along the 
Overlap 
–  Sieves are distributed as “cone” sections 
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Sections associate data to submeshes 

 Name comes from section of a fiber bundle 
–  Generalizes linear algebra paradigm 

 Define restrict(), update() 
 Define complete() 
 Assembly routines take a Sieve and several 

Sections 
–  This is called a Bundle 
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Section Types 
Section can contain arbitrary values 
 C++ interface is templated over value type 
 C interface has two value types 

–  SectionReal 
–  SectionInt 

Section can have arbitrary layout 
 C++ interface can place unknowns on any Mesh entity (Sieve 

point) 
–  Mesh::setupField() parametrized by Discretization and 

BoundaryCondition 

 C interface has default layouts 
–  MeshGetVertexSectionReal() 
–  MeshGetCellSectionReal() 
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Section Assembly 

First we do local operations: 
–  Loop over cells 
–  Compute cell geometry 
–  Integrate each basis function to produce an element 

vector 
–  Call SectionUpdateAdd() 

Then we do global operations: 
–  SectionComplete() exchanges data across overlap 

• C just adds nonlocal values (C++ is flexible) 

–  C++ also allows completion over arbitrary overlap 
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Framework for  
Multi-model Algebraic System 

~petsc/src/snes/examples/tutorials/ex31.c, 
ex32.c 

http://www-unix.mcs.anl.gov/petsc/petsc-as/snapshots/
petsc-dev/tutorials/multiphysics/tutorial.html 
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Framework for Multi-model Algebraic System 
 ~petsc/src/snes/examples/tutorials/ex31.c 

A model "multi-physics" solver based on the Vincent Mousseau's reactor core 
pilot code: 

There are three grids 
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DA3 
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Thermal conduction 

(cladding and core) 

Fission (core) 



/* Create the DMComposite object to manage the three grids/physics. */ 
DMCompositeCreate(app.comm,&app.pack); 
DACreate1d(app.comm,DA_XPERIODIC,app.nxv,6,3,0,&da1); 
DMCompositeAddDA(app.pack,da1); 
DACreate2d(app.comm,DA_YPERIODIC,DA_STENCIL_STAR,…,&da2); 
DMCompositeAddDA(app.pack,da2); 
DACreate2d(app.comm,DA_XYPERIODIC,DA_STENCIL_STAR,…,&da3); 
DMCompositeAddDA(app.pack,da3); 

/* Create the solver object and attach the grid/physics info */ 
DMMGCreate(app.comm,1,0,&dmmg); 
DMMGSetDM(dmmg,(DM)app.pack); 
DMMGSetSNES(dmmg,FormFunction,0); 

/* Solve the nonlinear system */ 
DMMGSolve(dmmg); 

/* Free work space */ 
DMCompositeDestroy(app.pack); 
DMMGDestroy(dmmg); 
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/* Unwraps the input vector and passes its local ghosted pieces into the user 
function */ 

FormFunction(SNES snes,Vec X,Vec F,void *ctx) 
… 
DMCompositeGetEntries(dm,&da1,&da2,&da3); 
DAGetLocalInfo(da1,&info1); 

/* Get local vectors to hold ghosted parts of X;   
    then fill in the ghosted vectors from the unghosted global vector X */ 
DMCompositeGetLocalVectors(dm,&X1,&X2,&X3); 
DMCompositeScatter(dm,X,X1,X2,X3); 

/* Access subvectors in F - not ghosted and directly access the memory 
locations in F */ 

DMCompositeGetAccess(dm,F,&F1,&F2,&F3); 

/* Evaluate local user provided function */ 
FormFunctionLocalFluid(&info1,x1,f1); 
FormFunctionLocalThermal(&info2,x2,f2); 
FormFunctionLocalFuel(&info3,x3,f3); 
… 
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Bypassing the Sparse Matrix Memory 
Bandwidth Bottleneck 

•  Newton-multigrid provides 
–  good nonlinear solver 
–  easy utilization of software libraries 
–  low computational efficiency 

•   Multigrid-Newton provides 
–  good nonlinear solver 
–  lower memory usage 
–  potential for high computational efficiency 
–  requires “code generation/in-lining” 
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  Parallel Fast Poisson Solver 

 More TS methods 

 … 
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How will we solve numerical applications 
 in 20 years? 

•  Not with the algorithms we use today? 

•  Not with the software (development) we use 
today? 



How Can We Help? 

 Provide documentation:

–  http://www.mcs.anl.gov/petsc


 Quickly answer questions

 Help install

 Guide large scale flexible code development

 Answer email at petsc-maint@mcs.anl.gov
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