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Terrestrial hydrologic cycle: many coupled

processes
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Yet it is usually simulated with disconnected

models
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These models explicitly incorporate fluxes
at air/land-surface/subsurface interfaces
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ParFlow is a combination of:

e

. = Ground Surface
* Physics / — "
" : —

e Solvers :]

e Parallelism
, R P Infiltration Front
150.]
R Vadose Zone

- aturated| Zone

X (m) 109

! T -I T H EI- 15

Saturation [-1 10 Water Table




ParFlow Watershed

Atmospheric Forcing

- Land Surface M Oae€
Flow Divide 1 Root Zone « PF.CLM= Parflow (PF) +
| Common Land Model (CLIV)
Kollet and Maxwell (2008), Kollet and Maxwell
Vadose Zone (2006), Maxwell and Miller (2005), Dai et al.
, Vegetation (2003), Jones and Woodward (2001); Ashby

and Falgout (1996)

i

R :
%Uted Wy, © Surface and soil column/root

zone hydrology calculated by
PF (removed from CLM)

e Overland flow/runoff handled
by fully-coupled overland flow
BC in PF (Kollet and Maxwell, AWR, 2006)

e CLM is incorporated into PF as
a module- fully coupled, fully
mass conservative, fully
parallel




Overland Flow: The Conductance Concept
q,(x)

Kinematic wave eq

0
LA Ve, v-q,(x)-q,(x)

ot

q.(x)= A0k, -v,)

Exchange Flux

oo W, o aSWaQ;up)

=V:q+q_ +m
S w at_ q qS qe

Richards’ eq

e.g. VanderKwaak and Loague (2001); Panday and
Huyakorn (2004)



Overland Flow: General Pressure Formulation

s =V -zpsv —-q, (x) -q, (x) Kinematic wave eq

Y Y=Y

The greater of yand 0

MOSLE

0V -g,(x)

dp. = —Kskr (I/j N(I/j — Z) Neumann type BC

qbc:qe

- kv )= 220 gy o] .00

Kollet and Maxwell, AWR (2006)
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- ® W Simulation

Low-K slab
I = ;{I/Wa'rer table below Exa m ple
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Coupled Model Example: Subsurface Heterogeneity can
influence the Hydrograph

Random (Gaussian) Heterogeneity Small Monte Carlo Simulation
0.0025
«“ base case
«— —= ==
I s Water table below £) 0.0020 1
sm  ground surface &
£ 0.0015 -
2
S
2 0.0010 -
=
=
© 00005 -
‘ geometric mean
0.0000 “——r : .
0 50 100 150 200 250 300
200 300 400
x (m) Time (minutes)

——

0.2 0.4 0.6 0.8 1.0
Saturation

K, geo = Y4 yain

Kollet and Maxwell, AWR (2006)



Land Surface Models

eSimulates water and energy
balance near the land
surface

eSingle column soil-snow-
vegetation biogeochemical
model

e Atmospheric forcing

eCan be coupled to
atmospheric models

eSimplistic, shallow,
subsurface component

Baker, et al, 2003; Dia, Zeng and Dickinson,
2001
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ParFlow Synopsis - Physics

Fully parallel, multigrid-preconditioned, finite
difference/finite volume 3D flow

Groundwater equation (steady-state, e.g. Ashby
and Falgout 1996)

Richards’ equation (transient, 3D; e.g. Jones and
Woodward 2001)

Fully-coupled overland flow (via Kollet and Maxwell
2006, overland flow boundary condition approach)

NCAR-Land Surface Model CLM integrated into
ParFlow as module, all biogeophyiscal, energy
budget at land surface, snow/snowmelt/
compaction, some dynamic plant interactions



ParFlow Synopsis — Physics (cont)

* Coupled to U of Oklahoma mesoscale
atmospheric code ARPS (e.g. Maxwell,
Chow, Kollet 2007)

* Coupled to NCAR Weather Research and
Forecasting (WRF) Code (Maxwell et al
2009)

* Couples to (integrates with) Lagrangian
contaminant transport code (SLIM)



ParFlow- performance

Efficient implementation results from

— efficient linear preconditioning (HyPre)

— efficient nonlinear solver (Kinsol =SUNDIALS)

— efficient coupling and code operation/architecture

All implementations scale linearly with problem size

All implementations demonstrate excellent parallel
scaling to large (~1000) processors

For 3D, Steady-state groundwater ~100 X faster than
typical GW code

For 2D, transient Richards’ variably saturated ~10X
faster than typical var-sat codes in 2D, much greater
speedup in 3D



Performance: Making the problem “harder”

TABLE 5.5

Ashby and Falgout (1996)

Norm cf Relative Residual

Varying the degree of heterogeneily.

Number of Iterations

Number of lterations

Heterogencity 12CG [ MGCG MG
O 0}3‘- iters time || iters | time || iters | time
0.0 ] 0x10% | 1701 | 354.4 9| 10.4 13 | 12.8
0.5 6 x10° (| 3121 | 650.3 9 10.4 13| 12.8
1.0 | 7x10' || 3388 | 705.7 9| 10.4 12 | 11.8
1.5 1 1x10% | 3670 | 764.6 11 | 12.5 22 | 21.6
2.0 | 4x10% || 4273 | 889.5 17 | 18.8 || diverged
2.5 | 4x109 | 5259 | 1094.4 | 26 | 28.2 || diverged |
J2CG MGCG
1E400 ¢~ 1E+00
1E-02 - 0 Y g0 -g
‘g l% 5
1E-04 ¢ 5 o 1E-04 ¢
1E-06 + 329 1E-06 -
o
1E-08 S 1E-08
{E-1 E
10 s AR £ 1E10 e
0 1000 2000 3000 4000 5000 6000 0 5 10 15 20 25

30



Performance: Making the problem bigger

TABLE 5.4
Enlarging the domain size: the grid spacing is fized while the number of grid points is increased.
Problem Size J2CG MICG MGCG MG
Ny | Ny | ny | iters time || iters | time || iters | time || iters | time
7] 171 9f 453 L.1]| 11] 0.3 9| o4 12 0.4
33 | 33| 17| 957 5.7 13| 0.5 10 0.7 14 0.9
65 [ 65| 33 | 1860 56.0 16 | 2.0 10 2.1 19 3.6
129 | 129 | 65 || 3665 763.4 18 | 12.1 11 | 12.6 21 | 20.6
257 | 257 | 129 || 6696 | *1403.8 NA 13 | *15.1 22 | *22.8

*These times are for 256 processors (P =4 x 8 x 8)

Ashby and Falgout (1996)




Parallelization




Parallelization

message-passing

shared-memory

— — — — — — -y — — — — — — -y
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Falgout and Jones (1999)



Parallelization- Distributed Memory

O
O

Al

o

0

S

Ay
/|
|

v,

O

o lA\ o
\ SN
NN

9
O

Falgout and Jones (1999)



Performance: Serial and Parallel

* Performance and parallel performance are
intricately linked

* To get good parallel performance the
numerical algorithm must scale linearly with
problem size

* |f we want to run large problems and our
solver does not scale parallel performance will
not be sustained



Scaled Parallel Efficiency- Scaled
Speedup
Scaled parallel efficiency, E, is defined as the

ratio of time to run a problem of varying size
as we keep the per-processor work constant

T(n,l)
E(n,p) = T(pn,p)

T =run time
n = problem size
p = number of processors



Parallel Performance: Scaled Speedup
of the Linear Problem

MGCG (Time)

1 30
5 08 25 B
© . o
¢ 0.6 - 20 O
& -15 §
v 04- 0 &
2 —&— Scaled Speedup )
g 0.2 - . @ - MGCG lierations - 5 a

0- .0

1 2 4 8 16 32 64 128 256
Number of Processors

Ashby and Falgout (1996)



Scaled Parallel Efficiency of Coupled
Model

1.0
T 5
S surface/subsurface | &l 9
2 o ©
S 2l &
= ks
O 0.6
5
5 5.
N < <
=
04 m — :9)
<
=
wn
||||| ] ] 1 1 LILL
1 10 100

Number of processors, p

Perfect efficiency: double problem size and processor #

same runtime=>E=1
Kollet and Maxwell, AWR (2006)



Parallel Performance: Correlated GRF
Simulation
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ParFlow Synopsis- code

operation
ParFlow written in ANS/ C with object-oriented
structure

Parallel from “bottom-up” with ability to handle many
communication sublayers (serial, shared-memory and
distributed memory implementation from one common
physics core)

OctTree technique to allow any general domain shapes
and geometries (topography, large-intermediate-scale

geology)
TCL/TK scripting interface w/ object-oriented structure

Parallel Gaussian and Parallel Turning Bands stochastic
random field generators with ability to follow any
geometry (e.g. Maxwell et al 2009)



ParFlow Synopsis- code

operation (cont)
Recently released under GNU LPGL license,
open-source, free software

Multiplatform, “Laptop to supercomputer”
with OSX, Windows and Linux Unix porting

Build system now handled by GNU Autoconf
makes porting simple

Robust toolset (PFTOOLS) to manipulate/post-
process files

Output now fully integrated with VISIT
visualization system among others




Model Input Structure

TCL/TK scripting language

All parameters input as keys using pfset
command

Keys used to build a database that ParFlow
uses

ParFlow executed by pfrun command

Since input file is a script may be run like a
program



Computational Grid (Input File)

# _________________________________________________________
# Computational Grid

# _________________________________________________________
pfset ComputationalGrid.Lower.X 0.0

pfset ComputationalGrid.Lower.Y 0.0

pfset ComputationalGrid.Lower.?Z 0.0

pfset ComputationalGrid.NX 30

pfset ComputationalGrid.NY 30

pfset ComputationalGrid.NZ 30

pfset ComputationalGrid.DX 10.0

pfset ComputationalGrid.DY 10.0

pfset ComputationalGrid.Dz 05



SolidFile Geometry

A triangulated
information network
file that can delineate
geometries of any
shape

Read in as a .pfsol file
Geometries and

patches are defined
from within the file

May be used to
delineate active and
inactive cells

nactiv /
/
/

active

|/




Octree used to delineate geometries

|
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Source: Wikipedia



SolidFile Geometry




Take Home Messages...

* We can strive towards an integrated picture,
model and understanding of the hydrologic
cycle

* This requires new equations, process
descriptions, solvers and parallel architecture

* This enables new understanding about
connections between components
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ParFlow — Getting the Code, more

information

Old (LLNL) ParFlow web page:

https://computation.linl.eov/casc/parflow/
parflow home.html

Reed Maxwell’s web page (code section updated soon w/ PF
download, etc)

http://inside.mines.edu/~rmaxwell/

ParFlow Blog
http://parflow.blogspot.com/

Email: rmaxwell@mines.edu
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Water Table Depth, Cross Section

Water table driven by topography
Very deep (~40m) at hilltops (drier)
Very shallow in valleys (wetter)

Cross section shows variation of WT and
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Maxwell, Chow and Kollet, AWR (2007)



Comparison to outflow and saturation observations

60
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) 50 s USGS
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Trends (particularly 40 1
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Influence of Groundwater Dynamics on Energy Fluxes

(yearly averaged)
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