Coriolis forces influence the secondary circulation of gravity currents flowing in large scale sinuous submarine channel systems

Remo Cossul®, Mathew Wells2**
1) Department of Geology, University of Toronto, Toronto, ON, Canada 2) Department of Physical and Environmental Sciences, University of Toronto, Toronto, ON, Canada

Introduction Results Conclusions
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flowing down a submarine channel with the gradient s, the sEhere) 3nd thg ||I1Iternal gy SHELE has been reported for the NAMOC (Klaucke et Figure 7:
channel height D and the channel width W (looking upstream). cranges dramaticaty. aI., 1997), as illustrated in Figure 8. Cognceptuall model for the evolution of submarine channels under the
The density of the ambient fluid and the gravity are p;, and p, Chapges i :\he inTernaI f:OW st.rltl.lcture - Influence of Coriolis forces (Cossu and Wells, 2011).
respectively, with p,>p, The main downstream flow is ug; while a sinuous ¢ anfne m(?de ?re litsiarizse
there is also a significant transverse motion consisting of the in Figure 5 a-d for various . =
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to the entire thickness of the flow A(y). b) Downstream velocity profiles. Channel (looking upstream), taken from Skene et al. (2002). 3400
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Data are taken from Cossu and Wells
(2010, 2011).
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