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Background
Increasing ice losses of the Greenland Ice Sheet (GIS) is
contributing almost 1/4 of the global mean sea level rise[1].
Ice losses due to subglacial ice melting and ice sheet dy-
namics, however, are still poorly understood due to lim-
ited accessibility and thus lack of data. We here show
an OpenFOAM-based one-dimensional subglacial conduit
model that can be applied to evaluate the diurnal fluctua-
tions and outburst flooding in Greenland ice sheet.

Figure 1: The hydrological system of Greenland ice sheet (a), its three
components: supraglacial system (b), englacial system (c), and subglacial

system (d), and an conceptual model of key physics in subglacial system (e).
Figures (a-d) are modified from Cuffey and Paterson, Los Alamos, Roger

Braithwaite, and Robbie Shone, respectively.

Equations & Boundary Conditions (1)
The subglacail model is composed by mass conservation for
ice and water, momentum conservation for water, energy
conservation, and empirical ice creep-closure model. En-
trance pressure boundary is governed by a lake-englacial-
subglacial system as shown in Fig. 2(a).

Figure 2: The entrance conditions (a) and mathematical models (b) for
subglaical conduits.

Equations & Boundary Conditions (2)
Two simplifications: (a) circular or semi-circular
shape, and (b) uniform wall shear stress.
The mass balance for ice, mass balance for water, and
momentum balance for water can be expressed by the
following equations[2] :
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where S, U , and Pw are time-dependent (t) conduit
cross-sectional area, water velocity, and water pres-
sure, respectively. ρw and ρi are water and ice density,
respectively. Mf and Mp denote the ice-melting rate
due to viscous friction and the ice-closure rate due to
viscous creep, respectively. They are defined as fol-
lows:
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Mp = K0S(Pi − Pw)3 (5)

The boundary condition and initial condition are:
BC: Pw|x=0 = ρwgHe, Pw|x=l = ρigHi, zero gradient
for S and U .
IC: Uniform U and S, linear distribution of Pw along
channel length x.

Solutions: Numerical & Analytical
Numerical Solution:
(1) Conduit length discretization: xi = x0 + i∆x, i =
0, 1, ..., N,∆x = l/N .
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V0, Q0,∆t, AL are user-specified parameters, denoting ini-
tial water volume, upstream input discharge, iterative
time interval, and value column area, respectively. Qout is
water discharged from the conduit to the ocean, calculated
during the simulation by Qout = U j

0S
j
0 .

(4) Solving the coupled water velocity and pressure
equations (2) and (3) to obtain (U j+1

i , P j+1
w,i ) using Pressure-

Implicit with Splitting of Operators algorithm[3] based on
previous time step value Sj

i , the velocity in the right hand
side uses old time step U j

i .
(5) Updating the conduit size Sj+1

i using equation (1).

Numerical Solution:
Assumptions: Mp � Mf in the initial stage and Mf is
approximately a constant in the quasi-steady stage.
For initial stage:

S = S0(1− βt)−4 (6)
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For quasi-steady stage:
S = (α/a0)2/5g−2/5Q

4/5
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U = (α/a0)−2/5g2/5Q
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For circular shape, a0 =
√

4π, α = 0.8 ∼ 0.9, θ,Q0, f de-
note conduit slope, upstream discharge, and friction factor.

Application: Diurnal Variations

Figure 3: Validating numerical model with
analytical solution (a) and test assumption (b).

Figure 4: Impacts of friction factor on conduit
properties: entrance water depth (a), ice-melting
and creep-closure rate (b), discharge (c), size (d),

water velocity (e), and effective pressure (f).

Figure 5: Impacts of time variable input
dischargeQt on conduit discharge (a), size (b),

water velocity (c), and effective pressure (d), and
the effects of ice thickness on conduit size (f).

Application: Outburst Flood

Figure 6: Impacts of friction factor on
entrance water head (a) and ice-melting/creep

closure rate (b).

Figure 7: Impacts of friction factor on conduit
discharge (a) and size (b). β1 = 0.122 /day and

β2 = 0.025/day.

Figure 8: Impacts of friction factor on water
velocity (a) and effective pressure (b).
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