conduitFoam: an open source one-dimensional subglacial conduit model
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Background

Increasing ice losses of the Greenland Ice Sheet (GIS) is
contributing almost 1/4 of the global mean sea level rise'".
Ice losses due to subglacial ice melting and ice sheet dy-
namics, however, are still poorly understood due to lim-
ited accessibility and thus lack of data. We here show
an OpenFOAM-based one-dimensional subglacial conduit
model that can be applied to evaluate the diurnal fluctua-
tions and outburst flooding in Greenland ice sheet.
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Figure 1: The hydrological system of Greenland ice sheet (a), its three
components: supraglacial system (b), englacial system (c), and subglacial
system (d), and an conceptual model of key physics in subglacial system (e).

Figures (a-d) are modified from Cuffey and Paterson, Los Alamos, Roger
Braithwaite, and Robbie Shone, respectively.

Application: Diurnal Variations
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Figure 3: Validating numerical model with
analytical solution (a) and test assumption (b).
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Equations & Boundary Conditions (1)

The subglacail model is composed by mass conservation for
ice and water, momentum conservation for water, energy
conservation, and empirical ice creep-closure model. En-
trance pressure boundary is governed by a lake-englacial-
subglacial system as shown in Fig. 2(a).
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Flgure 2: The entrance conditions (a) and mathematical models (b) for
subglaical conduits.
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Figure 4: Impacts of friction factor on conduit

properties: entrance water depth (a), ice-melting

and creep-closure rate (b), discharge (c), size (d),
water velocity (e), and effective pressure (f).

Figure 5: Impacts of time variable input
discharge () on conduit discharge (a), size (b),
water velocity (c), and effective pressure (d), and

the effects of ice thickness on conduit size (f).

Equations & Boundary Conditions (2)

Two simplifications: (a) circular or semi-circular
shape, and (b) uniform wall shear stress.

The mass balance for ice, mass balance for water, and
momentum balance for water can be expressed by the
following equations!?! :
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where S, U, and P, are time-dependent (¢) conduit
cross-sectional area, water velocity, and water pres-
sure, respectively. p,, and p; are water and ice density,
respectively. My and M, denote the ice-melting rate
due to viscous friction and the ice-closure rate due to
viscous creep, respectively. They are defined as fol-

lows:
Ao Pw

M, = KoS(P; — P,)?

My = 25208 f (4)

(5)

The boundary condition and initial condition are:
BC: Pylz=0 = pwgHe, Py|o=1 = pigH;, zero gradient
for S and U.

IC: Uniform U and S, linear distribution of P, along
channel length x.
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Solutions: Numerical & Analytical

Numerical Solution:

(1) Conduit length discretization: z; = xo + 1Az,7 =
0,1,..., N,Axz =[/N.

(2)ICs: P, i = Py o+i/N(Py n—Puyo), Ui =Uo,S; = So.
(3) BCs: Py, 4 = pngg, Pi)N.: pigH?, Ul = UI UI, =
U3, S5 = 81,83 = S HI = [Vo+(Qo—Quut) At] /AL,

Vo, Qo, At, A1, are user-specified parameters, denoting ini-
tial water volume, upstream input discharge, iterative
time interval, and value column area, respectively. QQou¢ 1S
water discharged from the conduit to the ocean, calculated
during the simulation by Qou: = Ug Sg.

(4) Solving the coupled water velocity and pressure
equations (2) and (3) to obtain (U f o p7 +1) usmg Pressure-
Implicit with Splitting of Operators algorithm'®! based on
previous time step value S7, the velocity in the right hand
side uses old time step U7 .

(5) Updating the conduit size S:Z + using equation (1).

Numerical Solution:

Assumptions: M, < M;y in the initial stage and M/ is
approximately a constant in the quasi-steady stage.

For initial stage:

S = So(1 — Bt)* (6)
2 w g2 _
5—£ aoa 2/210 g Sé/4kH9f 1/2 (7)
pi L
For quasi-steady stage:
G — (@/@0)2/59—2/5 81/59—2/5]32/5 (8)
U — (a/ao)—2/592/5 (1)/592/5f—2/5 (9)

For circular shape, ap = v4m, a = 0.8 ~ 0.9, 0, Qo, f de-
note conduit slope, upstream discharge, and friction factor.
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Figure 6: Impacts of friction factor on
entrance water head (a) and ice-melting/creep
closure rate (b).

Figure 7: Impacts of friction factor on conduit
discharge (a) and size (b). 81
B2 =0.025/day.
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Figure 8: Impacts of friction factor on water

velocity (a) and effective pressure (b).
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