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CHAPTER 5

DISTRIBUTION OF SEDIMENT
IN UNDERFILLED BASINS

In the simplest of classifications, sedimentary basins consist of only two types,
those filled predominately with sediment and those filled with water and sedi-
ment. In the first type, sediment delivered to the basin often is distributed by the
same fluvial systems that carry it from the source. Only part of the sediment deliv-
ered from the source is trapped in the basin, the remainder being carried out by
the drainage system which collects water and sediment from tributaries draining
the basin’s shoulders. Sedimentary sequences in these filled basins consist pre-
dominately of fluvial deposits with minor eolian and lacustrine contributions. The
modern Andean foreland basin of Brazil is a good example. Deposition in these
filled basins can be simulated with the models in the previous chapter and it is not
necessary to discuss them further here.
. \

Basins that are partly filled by lakes or epeiric seas usually trap most of the
sediment delivered to them, and for this reason are here called “underfilled.”
Within them sediment is redistributed by various gravity-, wind-, and density-
driven processes. Water flows of rivers entering a basin give way to density-
driven flows of delta plumes, which in turn become dominated by wind-driven
circulation and water surface waves. In deep waters, slides, slumps, and sediment
gravity flows are important. The Arafura Sea between northern Australia and New
Guinea is a modern example. Simulating underfilled basins requires a deposi-
tional model for each of these processes.

Here we present numerical models for these major processes that distribute
sediment in underfilled basins. While the models all are simplified and two-
dimensional, they nevertheless attempt to incorporate the physics of each process
through the conservation laws. Deltas are treated first because they are located
where the river load first leaves a confined channel. Depositional patterns in del-
tas depend on (1) water and sediment discharge, (2) wind-driven currents and
waves, (3) tidal regime, and (4) a basin’s geometrical form and bathymetry. Deltas
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Figure 5-1

Eastern part of Lake Constance, Austria, showing delta

formed where Rhine (Rhein) flows into Fussach Bay.

Contours show elevation of bottom of lake in meters above

?eaal()avel. Note trace of section of Figure 5-2 (after Muller,
966). :

dominated by the first three factors are called river-, wave-, and tide-dominated,
respectively. A model for. a river-dominated delta that incorporates a turbulent jet
and sediment gravity flows is presented below.

Later, tides in channels and linear bays are treated using a form of St. Venant’s
equation which describes unsteady, nonuniform coastal channel flows in two
dimensions. Then, tides and wind-driven currents of open seas are treated using a
two-dimensional, vertically integrated model. Finally, wind-generated water sur-
face waves are modeled using Airy wave theory.

DELTAS AND DELTA PROCESSES

The Rhine River, one of Central Europe’s largest, originates in the Swiss Alps and
flows northwestward into the North Sea. About 100 km from its source, it encoun-
ters a natural settling basin, Lake Constance, where more than 90 percent of the
Rhine’s sediment load at that point is deposited in a lacustrine delta. In 1900 the
position of the mouth of the Rhine was artificially moved to Fussach Bay, in the
eastern part of Lake Constance (Figure 5-1). This engineering feat inadvertently
provided a natural laboratory for studying the growth of a new lacustrine delta. As
of 1961, extension of the new Rhine delta had decreased the surface area of Lake
Constance by about 1.2 km? (Figure 5-2). Approximately 26 million cubic meters
of sediment were deposited between 1951 and 1961 alone (Figure 5-3). The
growth has not been uniform in time however, because only modest growth
occurred between 1941 and 1951 because of drought-induced low discharges of
the Rhine. Note, too, that the delta is asymmetrical due to an artificial levee con-
structed on the east side of the river mouth that shunts distributaries to the west.
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Figure 5-2

Profile showing growth of Rhine delta in Lake Constance (after Muller, 1966). See

Figure 5-1 for trace of section.

Figure 5-3

Thickness of deltaic sediments deposited
between spring of 1951 and spring of 1961,

Lindau
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W >812 ¢
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Il >17-26

Fussach Bay, Lake Constance, Austria (after

Muller, 1966).

1951 - 1962

Sediment Deposition (m)

DELTAS AND DELTA PROCESSES

95




The morphology of the delta poses many questions. For example, what sedi-
mentary processes and magnitudes have determined the concave-upwards shape
of the delta front in Figure 5-2 and the planform of deposits shown in Figure 5-3?
What are the expected sedimentary textures in the deposits? Answers to these
questions can be obtained from a combination of field studies and numerical mod-
eling.

First, field studies show that sedimentary patterns of river-dominated deltas
arise from three distinct processes: sedimentation under an expanding turbulent
jet; bedload dumping at the river mouth; and downslope gravity transport due to
slumps, slides, and turbidity currents. The first two processes arise as flow expan-
sion and entrainment of ambient fluid slows the river water, thereby reducing both
its competency and capacity to carry sediment. Slumps, slides, and turbidity cur-
rents arise because of oversteepened slopes. To understand the mechanics of delta
sedimentation requires quantifying each process. Although there are more sophis-
ticated treatments, we follow the lead of James P. M. Syvitski and colleagues
(1988) at Bedford Institute of Oceanography, Nova Scotia, and sacrifice detail for
completeness. First, we provide a general model of flow in a turbulent jet and
resulting bedload and hemipelagic sedimentation. Next, we model downslope
gravity movements as a diffusion process. Finally, we combine the flow and sedi-
mentation models in a conservation equation to predict the temporal evolution of
the bed.

Deltas as Turbulent Jets

Turbulent jets are a special form of free turbulent shear flows in which turbulence
is created by a flow shearing past relatively stagnant fluid, in contrast to flow past
a fixed boundary. Typically, the mean flow velocity transverse to the main flow is
very small compared with the main flow velocity. Also, changes of velocity and
momentum in the direction of the main flow are slow with respect to those in the
transverse direction.

The dominant driving force of turbulent delta jets may be either the momen-
tum of the stream water or the water’s buoyancy. The former is called a momen-
tum jet, and the latter a plume. The buoyancy is created by less dense or warmer
water flowing into more saline or colder water. Depending upon water depths
immediately seaward of the stream mouth, the geometry of the jet will be either
plane or axisymmetrical. Of course, actual delta distributaries are mixtures of
these end members. Here we consider only a plane momentum jet (Figure 5-4).

The internal structure of a plane momentum jet consists of a development
region with a seaward-tapering zone of flow in which velocity is constant that is
surrounded by another region in which velocities decline laterally. Seaward is a
fully developed region where radial profiles of axial velocity are similar from pro-
file to profile. Both regions expand laterally at a linear rate with distance offshore
due to turbulent entrainment of ambient fluid. Concurrently the maximum axial
velocity decreases downstream due to loss of momentum and increasing cross-
sectional area.

The fact that the velocity profile remains similar to itself along the various
cross sections of the jet provides a useful simplification. Numerous laboratory
studies have shown that the x-directed, transverse velocity profile is well approxi-
mated by a Gaussian, or normal distribution, function. Thus, in the zone of flow
establishment the longitudinal velocity varies transversely as:
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Figure 5-4  Schematic plan view of a plane turbulent jet. Zone of plug flow with constant
velocity passes seaward into zone of established flow. U, = flow velocity, b, =
stream width.

(y+ax— O.Sbo) 2
Uy y = U,EXP e (5-1)
in the region
X
x<0b, and y>0.5 (bo—gz)
and
Uy = U, (5-2)

in the region

x<0%b, and (<05 (b,~ =) <y<0.5(b,~5))
o ol

DELTAS AND DELTA PROCESSES 97




In the zone of established flow the longitudinal velocity is given by:

1

b, 2 y?
U, = uoa(;) exp [—ﬁ] (5-3)

in the region
2
och,<x

where: u,, = longitudinal velocity,
u, = jet velocity leaving river mouth,

JrC,

a = 5 ,
b, = channel width at river mouth,
o = standard deviation of Gaussian velocity distribution,
o = 1
cn
C; =0.109,

and x and y are as defined in Figure 5-4. Laboratory experimental data suggest
that the rate of spreading is such that 6 = G x.

The y-directed velocities are obtained from the continuity equation for fluid
within the jet. The continuity or conservation of mass equation for an incompress-
ible fluid in the 2-D coordinate system of Figure 5-4 is obtained as follows. Con-
sider a cell of water of thickness 7, width dx, and length dy. Conservation of mass
for this cell may be written as:

Time rate of change of mass in cell = mass rate in — mass rate out (5-4)

The left side of (5-4) may be written:

dp
Py Tdxdy (5-5)

where: p = fluid density.

The right side is obtained as follows. Mass may enter the cell along both the x
and y directions. Considering the x direction first, mass enters the cell through the
up-flow face at a rate given by upTdy, where u is x-directed velocity. It exits the
cell through the down-flow face at location x+dx, at a rate given by Taylor’s theo-
rem:

mass rateout = upTdy+ %(up Tdy)dx (5-6)
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The y direction is treated similarly, and thus the net rate of mass addition
(mass rate in — mass rate out) is:

- aa—xupTdydx - g—yvadxdy (5-7)

where: v = y-directed velocity.

Combining (5-5) and (5-7) as in (5-4), assuming the fluid is incompressible
such that its density does not vary with location or time, and canceling like terms,
yields:

ou ov
To obtain v we first rewrite (5-8) as:
ov ou
3y ox (5-9)

Here one might consider obtaining v by substituting (5-1) through (5-3)
respectively, into the RHS of (5-9), taking their derivatives with respect to x and
integrating with respect to y. While this is possible in theory, in practice it is diffi-
cult. An easier method is to solve (5-9) directly by the finite-difference method.

Consider a flow field discretized into a rectangular mesh with nodes Ax and Ay
apart (Figure 5-5). The x-directed velocities are known for all nodes, and, for

i-1, j+1 i, j+1 i+1, j+1

+ i1, § i, j i+1,]

i1, j-1 i, j-1 i+1, -1

et AX——J—

- X

Figure 5-5

Example finite difference grid for obtaining y-directed velocities in 2-D turbulent
plane jet.
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argument’s sake, assume that v; ;, the y-directed velocity at i,j, also is known. The
problem is to find v; ;, 1. The simplest finite difference approximation of the LHS
of (5-9) is:

Lji+1 " Vij

Ay (5-10)

Now, Figure 5-5 shows that the gradient of u with respect to x that is mathe-
matically and spatially equivalent to (5-10) should be at j+1/2, but u is not known
there. The logical solution is to estimate u as an average of the u values at j and
j+1, and then calculate the right-hand side of (5-9) as:

1 [, +u,, . q] [w, . +u,_ ;.. 4]
|: i+1,j i+1,j+1 _ i-1,j i—1,j+1 (5_11)

2Ax 2 2

The two in the denominator arises because the x-directed velocities are chosen
at i+1 and i—1, that is, at nodes 2Ax apart. Now, setting (5-10) equal to the nega-
tive of (5-11) as per (5-9), and solving for v; ;, 1, yields:

Ay
Vijit1 = Vi,j+_4Ax([”i+1,j+“i+1,j+1] il LZESWE 2 ST (5-12)

Earlier, we assumed that v; ; was known. This will always be the case if the
computation moves towards larger j values and if an initial value of v is provided.
This initial value is easily specified because the symmetry of the plume requires
that v; ;, the y-directed velocity along the centerline, is always zero. Equations
(5-1) through (5-3), and (5-12) provide the necessary equations for calculating the
flow field of a 2-D, turbulent plane jet. They have been encoded in the FORTRAN

subroutine of Program 15.

Having defined the flow field of a deltaic jet, we now can consider the sedi-
mentation that occurs under it. This sedimentation consists of bedload dumping,
emplacement by various gravity driven flows, and the settling of particles initially
suspended within the river plume. These particles in the river plume consist of
very fine sands, silts, and clays of terrigenous origin, as well as the remains of
pelagic organisms, and hence are called hemipelagic sediments.

Hemipelagic Sedimentation Under the Jet

As the river jet decelerates and turbulence decays, particles begin to settle out. If
the particles were all spheres of constant radius and known density, their settling
velocities could be easily calculated using (4-53). But this is not the case. Parti-
cles also can fall as (1) sand and silt grains that are coated with clay particles, (2)
clay clasts of silt size, (3) mineral-bearing fecal pellets of pelagic zooplankton
with an average size of very fine sand, (4) silt-sized, inorganic floccules and col-
loidal floccules, and (5) biogenic tests. Collectively, these are called SPM, or sus-
pended particulate matter.

The processes whereby SPM is formed and deposited are complex but work in
fjords by Syvitski and colleagues (1988) has shown that the SPM deposition rate
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can be predicted by a simple model that assumes particles are removed from the
water column according to a first-order rate law. Consider a concentration C, of
SPM at a river mouth. The total inventory of SPM at the mouth, I,, in kilograms
per square meter, is C, integrated over the channel depth H,. Further assume that
particles are removed from the water column at any point according to the first-
order rate law:

dl
prie —Al (5-13)

where: I = total mass of SPM in the water column per square meter,
A = rate constant (£'1).

Later, we will specify individual rate constants for each size, density, and shape of
particle, but for now think of A as an average rate constant for all SPM. Then the
SPM remaining in the water column after time ¢, can be obtained by integrating
(5-13) under the boundary condition I = I, at t = 0, thereby yielding:

I=1e¢ (5-14)

If all of the material removed is deposited as sediment, then the sedimentation
rate Z(t) in kilograms per square meter per second is:

Z(f) = dit(lo—l) IR

A . (5-15)

It is sometimes preferable to define I, in terms of the delivery rate of the sus-
pended load to the river mouth:

o o,
I =HC =H — = (5-16)
o o0 OQD uabo
where: Q; = suspended load at river mouth (kg gD,
0, = river discharge at river mouth,
u, = flow velocity at river mouth,
b, = channe] width at river mouth.
Substituting (5-16) into (5-15) yields:
g -
Z() = A—2e™ (5-17)
uo o

Because the sedimentation rate of hemipelagic sediments in the plume is a
function of time, we can predict the sedimentation rate at various points in front
of the river mouth. This is accomplished by coupling the fluid velocity field of the
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jet, derived in the previous section, with (5-17). If we assume that SPM travels at
the same velocity as the fluid, then its location at time ¢ is given by:

t

x = Iudt (5-18)
0
and
t
y= jvdt (5-19)
0

Thus, each point under the plume has a parcel of water above it that has taken a
calculable amount of time ¢ to reach the site. This time can be substituted into
(5-17) to calculate the sedimentation rate there.

Earlier we noted that each particular size, density, and shape particle pos-
sesses a unique A, because each has a specific settling velocity. Also, each is
potentially affected by agglomeration, flocculation, and zooplankton pelletization,
all of which may vary with time. We will assume that each size class has a spe-
cific, temporally invariant removal constant, A,. Thus, the total sedimentation rate
at a site is the sum of the individual rates for each size class:

Qs -
Zp () = me e M (5-20)

Finally, the thickness of sediment deposited at a site after a time interval ¢
equals:

t
_v1 y
= Zpbsglsdt 621)

where: p,_ = bulk density of s size fraction in kg m>,

These equations are incorporated in Program 16.

Bedload Dumping

Bedload dumping refers to the deposition of the fluvial bedload at the river mouth
where flow expansion first reduces flow competency and capacity. The thickness
of sediment deposited by this process per unit time and area is given by:
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9

D, = 02
b Apb

(5-22)

where: o = proportion of river bedload deposited beyond delta topset beds,
0, = bedload transport rate (kg s'l),

A = area over which bedload is spread, here assumed to be given by
width of river mouth times x,(Figure 5-4),

pp = bulk density of deposited bedload.

(5-22) is incorporated into a subroutine in the next section.

Downslope Diffusion

Processes such as slumping, which account for the bulk of sediment transported in
many deltas, are difficult to define from first principles and so here are treated
heuristically. We assume that the sediment transport rate S due to these processes
is proportional to local bed slope:

S = —Da—h (5-23)
ox
where: D = transport coefficient (m2 s,
h = bed elevation,

x = distance.

From Chapter 4 the one-dimensional continuity equation for the bed is:

oh oS
3 = _a (5-24)
which can be combined with (5-23) to yield:
on _ 3%h
5 = Da_2 (5-25)
x

This is the one-dimensional diffusion equation. Considering two dimensions and
the addition of material at a rate R, from other processes such as bedload dumping
yields:

oh 0% o

Because (5-26) is used in a variety of disciplines, its solution has been well stud-
ied. An explicit finite-difference scheme is available for its solution but suffers
from the drawback that the timestep must be less than some function of the space
step to obtain a correct answer. [t is better to proceed to the next level of complex-
ity and consider an implicit finite-difference solution such as the Crank-Nicolson
(CN) approximation.
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Consider a grid of nodes where x; = iAx, and y; = jAy and time is incremented
as 1, = kAt. Then the CN approximation to (5-26) is:

hﬁl’h;ij_ x g+l _ppktly gkl [ S YT ST
At _Z(Ax)z[( ir1,; " 2R AR D) Chiv,j = 2R R )]
D
ko Lk
+ —2 2[(hff}':l—2hf."}'l+h£}'_ll)+(h’f,jﬂ—v2h,~,j+hl.’j_1)] (5-27)
2(Ay)
+ R

To calculate the updated value of the bed elevation at node i,j requires know-
ing the present bed elevations at the surrounding two nodes in the x and y direc-
tions and the new bed elevations at those nodes. The latter are not known yet, and
therefore as things stand (5-27) is not solvable. But suppose that (5-27) is written
for each node (i,j) at a given timestep over the ranges i=1,2,..m, and
j=1,2,... n.This would yield m times n equations in m times n unknowns. The
number of equations equals the number of unknowns, and the updated 4; ; are the-
oretically calculatible. Of course the number of equations will easily reach the
hundreds, and a computerized scheme for solving them is necessary.

Application of (5-27) is readily shown by example. Consider a three-by-three
grid of nodes where elevations on the boundary nodes are known throughout time.
Solution for the elevations at interior nodes proceeds by writing (5-27) for each
node after separating all the unknown elevations—all the Bk _on the left side.
The resulting set of equation in matrix notation is:

_hk+1 ] r 7

r - L1 H;

1 0 0 0 0 0 0 0 O]+, H,,

0 1 0 0 0 0 0 0 O e o

0 0 1 0 0 o 0 o o > i1

0o 0 0 1 0 0 0 0 oK L2 i | is28)

0 (-6) 0 (-6,) (1+26,+26) (-8,) 0 (-8)) Of|pk+1, )| = |Fk  + AR,

0 0 0 0 0 1 0 0 Offpk+l, Hy,

0 0 0 0 0 0 1 0 O ’ ’
JrEa H,;,

0 0 0 0 0 0 0 1 0 1,3 .y

0 0 0 0 0 0 0 0 1Ky, i3
Lhk+13 | His |

where: 8, = D,AH(2(Ax)?),

8, = DAIQ(A)),

H = known elevation,

R,lfj = amount of increase in elevation over next timestep A¢ due to other
processes such as hemipelagic sedimentation,

Fio=0,(hs,+hf ) +0 (Has+hy 1)+ (1-20,-20) k5,
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With nine nodes there is only one interior node and it could be calculated
explicitly. But with more interior nodes, the coefficient matrix of (5-28) will
acquire five diagonal bands of nonzero terms. To solve for all the & values at the
new timestep, an explicit calculation of hf-f}’l is not possible. The equations must
be solved simultaneously for the new bed elevations. (5-28) can be written in
abbreviated matrix form as:

A-h=b (5-29)

Here the dot denotes matrix multiplication, A is the coefficient matrix, h is
the column vector of unknown elevations, and b is the column vector of known
values from the right-hand side. To solve for h, the coefficient matrix must be
inverted and multiplied times the column matrix on the right side. While seem-
ingly laborious, it requires only one-fourth the calculations of the explicit method
and is numerically stable over all At/Ax as well. Here we use a method of solution
called LU decomposition as programmed in Numerical Recipes (Press, et al,
1986). Program 17 contains the FORTRAN code. Finally, all of the subroutines
described above can be combined into a general model of delta sedimentation
through the driver program listed in Program 18.

Experiment 5-1: Sedimentation in the Rhine Delta

Earlier we posed two questions concerning the morphology of the Rhine Delta in
Lake Constance. Now let us use the delta model to answer them. First, we need
estimates of input parameters. Muller (1966) documented that the average water
flow of the Rhine into Lake Constance from 1931 to 1960 was 224 m> per second,
the average suspended load was 454 gm m, and the average bedload was about
40,000 m® per year. The width of the channel was 200 m and the time-average
depth about 4 m, giving an average flow velocity of 0.28 m per second. To
account for the fact that roughly one-third of the sediment load exits through dis-
tributaries to the west and cannot be simulated by the model, we will reduce the
suspended load by one-third. Values of the removal rate constant A for the various
size fractions in the hemipelagic model are obtained from the data of Syvitsky and
others (1988). We also assume that the basin is deep enough so that the flow does
not interact with the bed, and the basin waters are still except for circulation due
to the jet. The flow field is discretized into a 20 by 22 square mesh, each cell 200
m on a side. The input file for the experiment is presented in Table 5-1 and results
are shown in Figure 5-6.

Now we can answer the questions posed earlier. The flow expands in cross
section as a linear function of distance into the basin, and decelerates as momen-

Table 5-1

Input data file for Experiment 5-1 involving turbulent plane jet of Rhine River as it enters
Lake Constance.

im,jm,km: # nodes in x and y; # timesteps (15) > 20<> 20<> 14<

Timestep in seconds (F10.3) >2.52288E08<

Spacestep in meters (F10.3) > 200.0 <

Flow velocity at river mouth (m/s) (F10.3) > 0.28 <

Width and depth of river mouth (m) (F10.3) > 200.0 <> 4.0 <

Diffusion constants in the x and y direction (F10.3) >0.00000001< > 0.00002 <
Elevation above datum (0.0) of sea level (m) (F10.3) > 60.0 <

Bedload dumping rate (m/s) (E10.3) > 6.0E-09 <

Concentration (gm/m**3) of coarse and med silt (F10.3)> 150.0 <> 50.0 <
Concentration (gm/m**3) of fine silt and clay (F10.3)> 50.0 <> 54.0 <
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tum of the jet is consumed in entraining and accelerating basin waters (Figure
5-6). The entrainment induces a symmetrical flow towards the jet, whose velocity
far away from the jet is:

v, ©

il
bO

As the delta progrades the flow field advances.

v, = ~0.155 (5-30)

Sedimentation is most intense near the river mouth where the bedload is
dumped and the rain of SPM is greatest. As the subaqueous portion of the delta
grows upward to lake level, the river mouth advances and these sites of rapid dep-
osition move lakeward. The shape of the subaqueous delta is a composite function
of the path that fluid parcels take in the jet, the exponential decrease in SPM dep-
osition with travel time, bedload dumping rate, and the x- and y-direction diffu-
sion constants reflecting slumping and turbidity currents. The shape of the
computed delta beds in Figure 5-6 would match those observed (Figure 5-2) only
if the transverse diffusion constant is three orders of magnitude greater than the
longitudinal diffusion constant. It is unlikely that slumping and turbidity currents
preferentially travel transversely. More probably, wind-generated circulation in
the basin spreads the plume. Because spreading is not treated explicitly in the
model, it must be subsumed in the sediment-diffusion treatment.

UNSTEADY COASTAL CHANNEL FLOWS

Channelized flows in coastal environments include those in tidal channels that
reverse with each tidal cycle, unidirectional flows of river distributaries, and com-
bined flows in estuaries. These flows may be highly unsteady over periods ranging
from minutes to days, with complex behavior that is counterintuitive. Flood
waves may move down a distributary, or tidal waves move up an estuary. For
these flows, the steady, gradually varied flow model in Chapter 4 is not adequate.
Instead, a model employing St. Venant’s equation describing long waves is
required in addition to the continuity equation. A long wave, in this context,
refers to long periods of oscillation, as found in tides, tsunamis, storm surges,
seiches, surf beats, and flood waves. Below, we derive the St. Venant and continu-
ity equations and apply them under the following assumptions:

m the channel is sufficiently straight and varies only gradually, such that a 1-D approx-
imation is appropriate,

m flluid pressure is hydrostatic everywhere,

m the water surface slopes gently,

m fluid density does not vary,

m the resistance coefficient can be estimated by observations of uniform, steady flows,
m there are no lateral inflows along the channel, and

m the channel is narrow enough so that Coriolis accelerations may be ignored.
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Figure 5-7

Longitudinal profile of stream occupying rectangular channel of width B, and cross-
sectional area A. X axis is horizontal and in alongstream direction. Differential cell,
stippled, has dimensions of B by h + { by dx, where h is still water depth and { is
water surface elevation. Q is discharge.

Derivation of Model

Under these assumptions, the conservation of mass and momentum equations may
be written using the notation of Figure 5-7. The conservation of mass or continu-
ity equation states that the time rate of change of mass in a cell (stippled in Figure
5-7) equals mass flux in minus mass flux out, or:

time rate of change of mass in cell = %[p (h+c)B}dx (5-31)

Mass flux in is pQ, and mass flux out equals the mass flux in plus the amount by
which that mass flux changes across the cell, or

pet flux = pQ - [pQ + %p de] (5-32)

If we eliminate common terms, and assume that 4 (still water depth) does not vary
with time, we obtain the conservation of mass equation:

oG 10Q
3~ Bax (&-39)

The conservation of momentum equation, or general law of motion, states that
the time rate of change of x-directed momentum in the cell equals the momentum
flux into the cell minus momentum flux out, plus the sum of forces on the cell.
The time rate of change of momentum of the cell fluid is the time rate of change
of mass multiplied by velocity:

S[pB(h+9)VIdx = L pgax (5-34)
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The momentum flux into the cell is the mass flux entering the cell multiplied
by velocity. The momentum flux out equals momentum flux in, plus the amount
by which that momentum flux changes across the cell, giving a net flux of:

PB(h+QVIV-[[pB(h+) VIV+L[pB(h+o VIVax] = Lpovax (639

X

The forces acting on fluid in the cell are the net fluid pressure forces and the
surface forces. The net pressure forces in the x direction arise because the hydro-
static pressure on one end of the cell will be different from that on the other end if
the water surface tilts. The hydrostatic pressure p on the upstream side of the cell
at any point in the vertical dimension, assuming uniform density, is:

p=p,+tpg(c—y) (5-36)

On the downstream side of the cell, the pressure is that given by (5-36), plus
the amount by which pressure has changed across the cell. The net pressure differ-
ence is:

dg
-p ga—xdx (5-37)

Here we assume that changes in atmospheric pressure p, are negligible along
the channel. Because the momentum equation is a force balance written in the
x direction, the pressure terms must be multiplied by the area perpendicular to the
x direction over which the pressure acts:

d
—-pg(h+¢) Ba—idx (5-38)

The important surface force acting on the fluid in the cell is skin friction along
the wetted perimeter, which may be represented by a shear stress T, multiplied by
the area over which it acts Pdx, where P is the wetted perimeter. But from (4-20),
T, equals pgRS; and because by definition PR equals A, the resistance term
becomes:

—t,Pdx = —pgRPSdx = —pgASydx (5-39)

which is negative, because it acts in the negative x direction. Assembling these
terms yields:

o
2p0dx = - 2pQVdx - pg (h+ Q) By dx— pgASdx (5-40)

If density does not vary in space or time, (5-40) may be divided through by p
and dx. Writing V as 1V to preserve the sign of the acceleration term, and writing
(h+{)B as A, yields the final form of the momentum equation:

9
% - —a—xQ|V| —gAa-gASf (5-41)

9Q 9

As developed in Chapter 4, Symay be written in terms of V through the Chezy
equation. Note also that the right-hand side of (5-41) is simply the gradually var-
ied flow equation written in terms of discharge.
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Figure 5-8

Computation points of finite-difference grid. Discharge Q, is computed at ith cross
section and nth timestep, whereas water surface elevation { is computed at
intermediate points in space and time.

An additional loss of momentum not yet accounted for occurs at abrupt chan-
nel enlargements as eddies are generated when boundary layers of the flow detach
from the channel banks. We commonly assume that the head loss is proportional
to change in velocity along stream through the channel enlargement:

|

=E

V2 :
% (5-42)

[ 3]

X

This head-loss term is a gradient or slope that may be included along with the
friction slope in (5-41).

Equations (5-33) and (5-41) are two first-order, nonlinear, partial differential
equations containing two dependent variables, Q and {, as functions of two inde-
pendent variables, x and ¢. Like many formulas for natural flows, the set of equa-
tions cannot be solved analytically and numerical integration is required.

A numerical scheme, after Koutitas (1988), solves the finite-difference forms
of (5-33) and (5-41) explicitly for £ and Q at specific locations and times, or, as
numerical analysts say, on a “staggered space-time grid” (Figure 5-8). The fact
that values of dependent variables are known only at specific points in space and
time is not as limiting as it may seem. Often we may know a channel’s geometry
only at a finite number of points and cannot specify continuous functions of B and
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A for the equations anyway. The finite-difference forms of (5-33) and (5-41) are
obtained by replacing the differentials with finite-difference quotients:

1
n+ - n—-
6 *-¢ ? - Q-0
i = 2 ( *i (5-43)
At B,+B,,, Ax
ol (Qi+1)2 _ (Qi_l)2 n+% n+%
Q; —Q?___ A Ay B AQi —Gi_1
At 2Ax BT Ay
2 n n 2 5-44
3] (Q,-H_ Q,-_I) 4
A, A. A,
—gA,- i + i+1 i-1
CzRi 4gAx

where: n = current time step
i = current cross section or node number
Ax = finite space step
At = finite time step.

Notice in (5-43) that c_,:” (1/D can be isolated on the left side, and in (5-44),

Q7 *1can be likewise isolated. Thus values of the dependent variables at each new
timestep may be obtained from their known values at the previous timestep. In
other words, starting from some known initial conditions, the equations predict

the future.

But it’s not that simple. If you think of solving (5-33) and (5-41) as an exer-
cise in the calculus, their integration yields two unknown functions, analogous to
constants of integration for ordinary differential equations. Here, however, they
are functions of integration because the equations are partial differential equa-
tions. We provide the information necessary to determine these functions as
boundary conditions at the beginning and ending boundaries of the channel.

At the incident boundary, either the water surface elevation or discharge must
be specified throughout the duration of the simulation. At the ending, or “termi-
nating” boundary, we can allow the discharge to pass beyond the reach, or be zero.
Thus the simplest set of boundary conditions is that {] equals a known.function
and Q,Lmax equals 0, where the superscript ¢ indicates that this value holds over
the whole time of the experiment. These boundary values provide the information
that completely determines the result. If the known function is a tidal stage record
and A, B, and C in (5-43) and (5-44) are appropriately chosen, then the equations
coupled with the boundary conditions will simulate a tidal wave moving up an
estuary as well as its reflection at the head of the estuary.

But another problem arises. Waves at the head of the channel will be reflected
back along the channel to the incident boundary, where they must be allowed to
pass out of the reach. If they do not, energy will accumulate unnaturally in the
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reach, and the numerical solutions will become unstable. Thus, at the incident
boundary, the water surface elevation {; must be the sum of an incident, known
elevation of the water surface plus the elevation of the reflected wave. But how
can we specify {; a priori? First, assume that we know the variation of the water’s
surface elevation imposed by incident waves traveling into the reach from a dis-
tance. For simplicity, suppose that the incident waves are sine waves of period T
and amplitude

27nAt

Gin = gosin( )] (5-45)

where n is the counter for the time step. Then the elevation of the water surface at
the boundary at the next time step, §’1’+1 , 18:

’ At
¢i*l = ¢ sin2n (n+1) =+ c_,;““ (5-46)

n+1
r

where: ¢ * "= predicted water surface elevation of reflected waves at new

timestep.

It is obtained by solving the wave equation:

—+C==0 (5-47)
X

which, in finite-difference form is:

n+l _ n+AtC(n_n) 5-48
o= o5 Cols (5-48)

where: ¢} = water surface elevation due to reflected waves at node 1,
1

¢, = water surface elevation due to reflected waves at node 2,
2

C,= Jg(h+g).

Values for {, are obtained in turn by assuming that they are the difference
between the actual { computed at those nodes and the expected { from the inci-
dent waves:

Sy, = 617 Gin, (5-49)
S, = S Sin, (5-50)

Finally, expected { at those nodes is approximated from simple long-wave
theory as: :

_— . 2mnAt

Sin, = Gosin ( T ) (5-51)
. . 2mnAt  Ax "
Sin, = G, sin ( T~ f) (5-52)

where: L =T.Jg(h+¢)
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Thus, the boundary condition at node 1, {;, may be specified as a known sine
function, while still allowing reflected waves to pass out through the incident
boundary of the channel.

At the terminating boundary, the conditions are simpler. If it is a reflecting
boundary, as at the head of an estuary, then Q = 0. If it is an open boundary, then
the conservation principle for a moving surge applies:

V=g é (5-53)

which may be used to calculate discharge at the last node using the finite differ-
ence form:

1
+=

n
n+1l _ 2 i
Qimax gimax -1 gBimaxAimax

Equations (5-43) through (5-54) are encoded in Program 19 and applied to a
channel of variable width and rectangular cross section where the slope of the
water surface causes the flow, and where bed slope is unimportant. Input to the
program consists of the number of cross sections, distance between each cross
section Ax, number of timesteps, magnitude of each timestep Af, Chezy friction
factor C, period and amplitude of incident waves, whether the terminating bound-
ary is reflecting or not, channel width B, and still-water depth % at each cross sec-
tion. Except for Ax and At, we can choose any values of the above that do not
violate the assumptions of the derivation. The space and time steps are con-
strained by a stability criterion called the Courant condition:

(5-54)

C, At

~2Ax

where C, has been defined above. The Courant condition decrees that the timestep
must be less than the time needed for a perturbation to travel the distance between
two nodes. Otherwise the solution becomes unstable, and { and Q become infi-
nitely large or small.

<1 (5-55)

Three Examples

We offer three examples of unsteady, gradually varied coastal flows, in order of
increasing complexity, to stimulate appreciation of the rich behavior of these sed-
imentary processes.

Experiment 5-2: Influence of Chezy Friction Factor

Consider a rectangular channel 2.5 km long and 30 m wide, with a still-water
depth of 10 m everywhere. Simple water surface waves represented by a sine
function enter at one end, with amplitudes of 1 m and period of 300 seconds, and
exit the other end. To investigate the influence of bed friction on the waves, an
experiment with an unusually low Chezy C of 5 m'%/s is chosen, which compares
with values of about 50 for various estuarine river mouths (Ippen, 1966). Table
5-2 constitutes the input file.

The output (Figure 5-9 and Color Plate 5-1) consists of surfaces, where one
horizontal axis represents location along the channel x, and the other represents
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Table 5-2

Input file for Experiment 5-3

25 1.0 100.0 5.0 300.0 1.0 1200 1 3 112 \IM,DT,DX,C,PR,ZO,NM,BK,MARK,NWRITE
30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 \B(I)
101010101010101010101010 101010101010 10 10 10 10 10 10 10 \HO(l)

time ¢. The vertical axis represents water-surface elevation C. In Figure 5-9, each
section whose trace is perpendicular to the distance axis represents a cross section
of the channel, and each section perpendicular to the time axis represents a “time
slice.” As shown, waves enter the channel with an amplitude of 1 m, but they
attenuate dramatically and deform into asymmetrical square waves as they propa-
gate down the channel (diagonally in x-¢ space). Simplified analytical solutions of
(5-33) and (5-41) (Ippen, 1966) demonstrate that frictional attenuation follows an
exponential decay function. The deformation, seen at the end of the channel in
Color Plate 5-1, arises because the wave crest travels faster than the trough. This
is a consequence of the fact that shallow water waves, even in the absence of fric-
tion, travel with celerity or speed C,, as defined above. In addition, the friction
term in (5-41) is inversely proportional to water depth, so that crests encounter
slightly less frictional resistance than troughs. The net result is deformation of the
wave form.

I
W A URAN
L NN
§ 0.2
e -~

€ag; g Of Y
"0 Doy, Time G
Sfrea

Figure 5-9

Computed water surface elevations for Experiment 5-3. Simple sinusoidal water
wave is imposed at incident boundary of channel. Wave crest propagates
downstream over time and passes diagonally across space-time plane, exiting at
lower right edge of surface. Wave is dampened and distorted to form partially
square wave as function of bed friction.
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Figure 5-10

Schematic traverse used in Experiment 5-3. Numbers denote individual cross
sections perpendicular to traverse. Tidal waves enter from open ocean on left and
pass over sill, entering an epicontinental sea on right. { is incident tidal amplitude,
T is tidal period, C is Chezy coefficient, At is timestep, B is cross-section width, and
Ax is distance between cross sections.

Experiment 5-3: Influence of Submerged Shelves on Tidal Waves

Ancient epicontinental seas often were separated from open oceans by shallow
carbonate platforms or shelves, as for example, in the Albian (Cretaceous) interior
seaway of western North America. Others were separated from the open ocean by
tectonic sills. These barriers undoubtedly had strong effects on the propagation of
tidal waves, and in turn on the sedimentary environments both within and along
the margins of the sea. The wave model outlined above provides an opportunity to
investigate this effect. Interestingly, the width of the shelf relative to the tidal
wavelength, more than the water depth, determines the tidal energy that passes
over the barrier into the epicontinental sea.

Consider an entrance to an epicontinental sea that is 100 km wide and with
bathymetry depicted in Figure 5-10. Assume, also, that a simple, semidiurnal,
lunar (M) tide (7 = 12.42 hours, {,= 2 m) propagates into the epicontinental sea
from the open ocean. What changes in tidal range and velocities will the barrier
induce? We can devise an experiment using the input file in Table 5-3.

The solutions for water surface elevation { are presented in Figure 5-11 and
compared with those for an equivalent situation except that the water depth is

Table 5-3

Input file for Experiment 5-3

50 10.0 100000.0 65.0 44712.0 2.0 26828 1 3 112

100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000.
100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000.
100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000.
100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000.
100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000. 100000.
2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000.

2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000.

2000. 2000. 2000. 2000. 2000. 2000. 2000. 2000. 1610. 1220. 830. 440. 50. 50.

50. 180. 400. 400. 400. 400. 400. 400. 400. 400.
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L Figure 5-11  Computed water surface elevations for Experiment 5-3. Equilibrium tides show

I amplification over sill-due to convergence and superposition of incident and

| reflected waves, and a dampened wave in epicontinental sea, due to loss of wave
! energy by reflection.

2000 m everywhere (Figure 5-12).The space-time diagram (Figure 5-11) shows
that a tidal wave crest initially travels into the epicontinental sea, moving diago-
nally across the space-time surface, while maintaining uniform height and wave
speed or celerity. Celerity is given by the slope of the propagation path on the
space-time plane. Each time line represents 1120 seconds (18.67 minutes), and
each space line is 100 km. The wave travels about ten “space lines” in six “time
lines,” or about 148 m/s. Given the range of error in our estimate based on Figure
5-11, this result is not much different from the speed of an ideal, frictionless shal-
low water wave as given by C,, (see definitions for (5-48)), which is about 140 m/s.

L When the wave reaches the sill, its height increases and its celerity decreases
i (Figure 5-11). The increase in wave height is caused by convergence effects and
I by reflection of wave energy off the seaward face of the sill. Let us consider the
”f convergence effects first. The total potential and kinetic energy per unit surface
area of a long wave is:

E=— -~ (5-56)

where: ¥ = specific gravity of water

i a = amplitude of wave.

Therefore the total energy of a wave is E times the crest length (call it /) and
wavelength L, as defined for (5-52). Now consider a wave propagating into shal-
low water. If we assume, as a first approximation, that the total energy of the wave
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Figure 5-12

Computed water surface elevations for Experiment 5-3, with water 2000 m deep.
In absence of sill, tidal waves propagate into seaway with little change in form.

remains unchanged as it travels, then its energy at any site in deeper water (call it
site 1) will equal the energy at a site in shallower water (site 2), or:

2

2
ya Ya
ST e+ 0) = =2LT g (hy+C) (5-57)
2 2

or,

1 1

a, 11)5 (hl + (;1)1

=12 _— - (5-58)
a; (lz hy+C,

This is Green’s law, named after an obscure, self-taught miller’s son, George
Green, who derived it in 1837 (Lamb, 1945). In Experiment 5-3 above, site 1
would be in water 2000 m deep and site 2 in water 50 m deep, with [} equal to I,.
From (5-58), the tidal amplitude at site 2 should be about 2.5 times that at site 1,
not because of friction and reflection of wave energy but simply due to conver-
gence effects.

The reflected wave appears as a wave crest traveling back to sea at roughly the
same velocity (angle in the space-time plane) as the incident wave. The reflected
wave is superimposed on the next wave entering the epicontinental sea, producing
a water-surface elevation at cross section 6 of about 2.2 m above mean water level
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when the wave crests coincide. Figure 5-11 shows that superposition of the
reflected and incident waves produces a complex tidal pattern in front of the sill,
which may be thought of as a combination of progressive and standing waves.

Behind the sill, the tidal wave’s amplitude is attenuated to about 0.9 m and is
shifted in phase by about 1-1/4 hours (Figure 5-11), with celerity slowed to about
62 m/s, which is consistent with the shallower depths. The attenuation is caused
by the wave reflection in front of the sill. Assuming for the moment that the tidal
wave’s loss of internal energy is small as it passes over the sill, then the law of
conservation of energy decrees that the transmitted wave’s energy must equal the
incident wave’s energy minus reflected energy. As presented above, the energy
per unit surface area of a wave is proportional to the square of the amplitude. The
amplitude of the transmitted wave a, therefore is:

a, = A/aiz - af (5-59)

The attenuation is a function of the water depth in front of, over, and behind
the barrier, as well as the barrier’s width relative to wavelength L. As Koutitas
(1988) points out, as the width of the barrier approaches L, the transmitted wave
amplitude approaches zero. The sensitivity of wave amplitude to the barrier’s
width and depth can readily be explored by varying its bathymetry in the input
file.

These results help us interpret sedimentation behind sills, banks, and bars. For
example, Ericksen and Slingerland (1990) point out that tidal circulation probably
was much less important than wind-driven circulation in the interior seaway of
western North America during Albian time. Their simulations suggest that fric-
tional dissipation and reflection due to the Texas carbonate bank at the seaway’s
southern entrance dampened Tethyian tides in the seaway.
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Figure 5-13
Map of Delaware Bay. Reach
modeled in Experiment 5-4
extends about 150 km down
estuary from Trenton.

-1

Experiment 5-4: Behavior of Tides in Delaware Bay

Delaware Bay, on the Atlantic coast of the United States (Figure 5-13), is an estu-
ary formed by post-glacial drowning of the Delaware River valley over the last
18,000 years. It extends about 215 km from its head at the fall line at Trenton,
New Jersey, to its mouth at Cape May. Although predominately saline, it receives
fresh water from the Delaware and Schuylkill rivers. It is also subject to tides of
the Atlantic Ocean of predominantly M, type as defined in Experiment 5-3. Like
many river mouths that are influenced by tides, its upper two-thirds is funnel
shaped and is thus representative of ancient estuaries in which tidal waves of the
open ocean induced complex tides within the estuaries. As in Experiment 5-3,
tidal circulation in estuaries of this type is influenced by the lateral convergence
of the tidal crest and by reflection from the estuary head and sides. A model of
Delaware Bay provides further insight into complex circulations and provides a
test of how well the model simulates reality. We will focus on the funnel-shaped
upper two-thirds of the estuary, although in principle we could apply the model to
the entire length of the estuary, beginning at its entrance to the Atlantic.

The hydraulic geometry of upper Delaware Bay (Ippen, 1966) is well repre-
sented by equations of the form:

= 1000>* (ft) (5-60)

5 (5-61)
A = 21,000e** (ft?)

where: & = 0.67 x 107 ']
x = 0 at Trenton.

The mean depth, &, is A/B, or 21 ft (6.4 m). These equations generally apply mov-
ing down the estuary to where x = 5 x 103 ft (Figure 5-13). The tidal amplitude a,
at any distance x relative to the amplitude a, at x = 0 (Figure 5-14) decreases and
then increases as the wave travels up the estuary, reaching a maximum at Trenton,
where a, = 1 m. High water at Trenton is 5.6 hours after high water at the entrance
(Ippen, 1966).

In our simulations of upper Delaware Bay, it is convenient to define a curved
traverse or line-of-section along its axis, and in turn subdivide it into 50 cross sec-
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3
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0 40 80 120 160

Distance from Trenton (km)

Figure 5-14

Observed tidal amplitude ratios versus distance from Trenton in Delaware Bay,
where observed tidal amplitude, a,, is 1 m.

UNSTEADY COASTAL CHANNEL FLOWS 119



Table 5-4

Input data file for Experiment 5-4

51 10.0 3048.0 38.0 44712.0 1.9 50000 0 3 112 IM,DT,DX,C,PR,ZO,NM,BK,MARK,NWRITE

tions. The width and area of each cross-section are calculated from (5-60) and
(5-61) and converted to meters. Mean depth is 6.4 m everywhere, and a timestep
of 10 seconds is employed, as calculated from (5-55). The entrance tides to the
reach are simulated by a sine function of period 12.42 hours (Harleman, 1966).
The amplitude {, of the entrance tides is difficult to specify at the beginning of
the experiment, because we have chosen the boundary inside the estuary. The
observed actual tidal amplitude at the boundary is 0.9 m (Figure 5-14), but this is
the sum of an incident wave and a wave reflected off the estuary head. We could
compute the incident amplitude by subtracting the reflected amplitude from the
observed amplitude, but the amplitude of the reflected wave is not known and
must be calculated by the model. There is an additional uncertainty, because we
also do not know the Chezy C. The solution, however, is to conduct a number of
experiments, varying { and C, until the computed amplitudes match the
observed. This may seem to defeat the purpose of the modeling, but we do obtain
additional information, including the shape of the tidal wave, its phase change as
it progresses up the estuary, and most importantly, an explanation for the curious
spatial variations in its amplitude.

We will also simulate the situation in the autumn months, when the discharge
of fresh water is lowest and can be ignored in the model. Table 5-4 contains the
input file for the specific experiment whose results best fit the observed ampli-
tudes. Unlike the input files of previous experiments, the input file does not con-
tain the widths and depths of the individual cross sections. These are calculated
within a version of the program modified from Program 19.

From the results graphed in Figure 5-15 and Figure 5-16 we first note that the
calculated tidal amplitude ratios closely match the observed. The incident ampli-
tude and Chezy C that produce this close correspondence (Table 5-4) are reason-
able, although the Chezy C is low compared with other estuaries. For example,
River Hoogly in India has a Chezy C of 67 m'%/s. A low C value represents a
high rate of energy loss due to friction, which arises because we have forced the
friction term in (5-44) to account for energy losses from continuous reflection of
wave energy off lateral boundaries, as well as dissipation by bed friction. Sec-
ondly, the phase changes match equally well. The predicted time of high tide at
Trenton is slightly more than five hours after high tide at the entrance, comparing
favorably with the observed lag of 5.6 hours (Ippen, 1966).,

How shall we explain this phase lag and variations in amplitude with distance
up the estuary? The model helps answer this question by exploring the influence
of wave reflection in the absence of crestal convergence, and vice versa. Figure
5-17 presents model results for a situation in which the estuary is of a uniform
width equal to that of Delaware Bay’s width at Trenton. The reflected wave now
shows clearly. Frictional dissipation dampens both the incident and reflected
waves, and when the two wave heights are summed, they yield an amplitude-ratio
curve of the correct shape but whose magnitudes are too low.

Another experiment in which the funnel shape of Delaware Bay is included,
but not wave reflection, shows that funneling causes a monotonic rise in tidal
amplitude up the estuary. When the two effects are superimposed, a frictionally
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Figure 5-15

Computed tidal range (relative to the range at Trenton) versus distance along
- estuary. Values upon which plot is based compare favorably with observed values
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Figure 5-17

Computed water surface elevation for Experiment 5-4, with estuary of constant
width. Waves travel up estuary (towards lower right) and are reflected off estuary
head at Trenton (fower right edge of surface). Both incident and reflected waves
are frictionally damped, and their superposition produces some of change of tidal
amplitude with distance seen in Figure 5-15. Remainder is due to convergence.

damped, reflected wave develops that is augmented due to funneling. The result-
ing variations of amplitude with distance up the estuary (Figure 5-14) would be
difficult to predict in the absence of modeling. The tides in many other estuaries
behave similarly. It is not the funneling effect but the reflected wave that plays the
major role in causing macrotides.

2-D, UNSTEADY, NONLINEAR TIDAL AND
WIND-DRIVEN COASTAL CIRCULATION

Introduction

Many epicontinental sedimentary basins contained shallow seas at times in their
history. To interpret deposits formed in these seas, we must “hindcast” their
oceanography and focus on questions such as were there net sediment transport
directions, were they tide- or wind-dominated, and were salinity gradients impor-
tant. Numerical models help because they allow the geologist to conduct sensitiv-
ity experiments. The logic for their use is as follows: If the paleobathymetry and
paleogeography of a basin can be specified, and if the incident tides from the open
ocean can be specified, and if the sea was not stratified, then physical laws
embodied in the geophysical flow equations demand that the circulation must
have assumed the computed form. Such a hindcast can then be tested against field
data. If the match is poor, then the conclusion is that some or all of the model is in
error, and an improved model must be formulated. If the results match the field
data, then the model may stand as a present best estimate of the sea’s paleocean-
ography and possibly can be used to hindcast the nature of deposits formed in that
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sea in areas with little or no field data. Either way, something new has been
learned about nature.

This section is devoted to the derivation and exploration of a simple two-
dimensional model of circulation in shallow seas, with an intended application to
ancient epicontinental seas and coastal oceans. Epicontinental seas and coastal
oceans are characterized by thin water columns on the order of tens to hundreds of
meters, and horizontal distances on the order of hundreds of kilometers. They dif-
fer from the open ocean because coasts strongly constrain their motion and
because surface effects that include wind shear stresses strongly influence a sig-
nificant fraction of their water column. At the same time, much as in the open
ocean, their motions are strongly affected by the Earth’s rotation. The dominant
motion of shallow oceans is rotary flow in which the current vector passes
through 360° over roughly a day. Superimposed on this motion are residual and
unidirectional flows at times scales of days to weeks. It is these latter flows that
constitute “circulation” of a sea.

Circulation, in combination with wave-generated currents, is responsible for
sediment dispersal and therefore plays a dominant role in sedimentation. To cal-
culate actual three-dimensional coastal flows in their full vertical complexity is
beyond the scope of this book, but it is possible to represent much of their behav-
ior with respect to sediment transport by assuming a constant flow velocity over
the vertical height of the water column, thereby simplifying this representation.
Such a limitation is not as severe as first appears because for many coastal flows,
steep velocity gradients develop only near the bed. This assumption simplifies the
mathematics because depth-mean velocities may be used and the momentum
equation in the vertical is reduced to the hydrostatic approximation. On the other
hand, we must recognize that some important aspects of coastal flows will not be
represented by such a model. For example, circulation near coastlines due to wind
shear commonly produces bottom flows whose magnitude and direction contrast
strongly with surface flows.

Derivation of the Model

If we agree to calculate only horizontal x- and y-directed, vertically averaged flow
velocities, U(x,y,t) and V(x,y,t), and water surface elevation, {(x,y,t), we need only
three equations for their solution. As usual, the three equations will come from
the conservation of mass and momentum laws written for the two horizontal
directions. The laws are applied to a block of water as pictured in Figure 5-18.
The block, or cell, has a unit area of dx times dy and is A+{ thick. First, consider
conservation of water mass in the cell:

Time rate of change of mass in cell = mass rate in — mass rate out (5-62)
The first term, time rate of change of mass in the cell, can be written as:

a%p (h+¢) dxdy (5-63)

In the second term in (5-62), mass can enter the cell in both the x and y direc-
tions. In the x direction the mass rate into the cell through the left face in Figure
5-18 is:

pU(h+¢)dy (5-64)
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As before, we use Taylor Series to define the mass flux out of the cell through the
right face in Figure 5-18. The mass flux out that face is the mass flux into the cell
in the x direction plus the rate at which that flux changes across the cell, or:

pU (h+¢) dy+%pU(h+c_,) dydx (5-65)

Likewise, the mass flux into the cell through the front face is:
pV(h+c)dx (5-66)

and the mass flux out through the back face is:
pV(h+¢) dx+a%pV(h+g) dxdy (5-67)

Substituting (5-63) through (5-67) into (5-62) and canceling common terms
yields:

0 =9 _9 y
5i‘(ﬁh+g)_ 35U (149 =5V (ht0) (5-68)

The first term in (5-68) can be simplified by assuming that temporal changes
in bed elevation are very small with respect to the other terms, in which case:

% 3 ) _
B_t+a_xU(h+g) +$V(h+g) =0 (5-69)

(5-69) is the continuity equation for two-dimensional, incompressible vertically
averaged flow.

Next, consider the law of conservation of momentum, which states that:

Time rate of change of momentum in cell =
momentum flux in — momentum flux out + (5-70)
sum of forces acting on fluid in the cell

Because momentum is a vector quantity, this law must be applied in a particular
direction. In the 2-D problem at hand, the law is applied in two directions, x and y
in Figure 5-18. Considering the x direction first, we can write the left side of
(5-70) as:

Lo (h+) dxayU &7

The first two terms on the right side of (5-70) represent the net momentum
flux added to the cell. Momentum enters and exits the cell principally by convec-
tive momentum transfer. Convective momentum transfer occurs because water
flowing into the cell possesses mass and is traveling at some velocity and there-
fore possesses momentum. X-directed momentum enters the cell by way of a mass
flux through the left face which can be written as p (A +¢) dyU. This mass enter-
ing per unit time has a velocity U and therefore brings momentum into the cell at
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Figure 5-18  Diagram defining concepts and symbols used in equations for 2-D vertically
averaged flow.

a rate of p(#+¢)dyUU. This x-directed momentum exits the cell through the
right face at a rate given by a Taylor series expansion, so that the net rate of addi-
tion of x-directed momentum through the two faces is:

p(h+Q)dyUU - [p (h+Q) dyUU+%p (h+Q) dyUUdx] =
5 (5-72)
2o (h+¢) dyUvax

X-directed momentum also may enter the cell by way of a mass flux through
the front face. That mass flux, represented by p (A +¢) dxV, carries an x-directed
momentum given by p (h+¢)dxVU. The x-directed momentum exiting the back
face per unit time is obtained by Taylor series as above, yielding a net rate of
addition of x-directed momentum due to flow in the y direction of:

a%" (h+Q) dxVUdy (5-73)

The x-directed forces acting upon the fluid in the cell include the net pressure
force, Coriolis force, and shearing forces at the bed and water surface. Consider
the net pressure force first. The hydrostatic pressure acting on the left face in Fig-
ure 5-18 responsible for fluid motion 1is:

P = pgg (5-74)

By Taylor series expansion the net x-directed pressure on the cell of fluid is:

_ F) ] !
pgs— (pgc+ ax(pgg) dx) = pgaxdx (5-75)
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The net pressure force acting on the cell of fluid is the net pressure of (5-75)
times the area over which it acts, or:

96
-pg(h+¢) dyadx (5-76)

It is not immediately clear when applying Newton’s general law of motion to
the coastal ocean why a term for Coriolis force is needed. Why should not F=ma
be enough? The answer, of course, is that F=ma applies only when a is measured
relative to axes that are fixed in space, i.e., not accelerating. Our coordinate sys-
tem is fixed on the surface of a spinning globe and therefore undergoes angular
motion and constant acceleration. It is the Coriolis term, named after Gaspard
Gustave de Coriolis, an early-nineteenth-century French engineer and mathemati-
cian, that adjusts the general law of motion to this rotating reference frame. In the
x direction, the simplified horizontal component of the Coriolis force is:

C, = 2Q(sing) V(h+¢) pdxdy = fV(h+¢) pdxdy (5-77)

where: Q = angular velocity of Earth’s rotation (of magnitude 2x radians per
sidereal day, or 7.29 X 10rad s_l)
" ¢ = angle of latitude.

If the bed and surface shear stresses are T, and T, respectively, then the shear-
ing forces are:

T, dxdy + T dxdy (5-78)

Substituting (5-71) through (5-73) and (5-76) through (5-78) in (5-70), can-
celing like terms, and expanding terms, yields:

9 oU_ o U ud (h:
Uat(h+g) + (h+g)at + Uax(h+g) U+ (h+¢g) Uax + Uay(h+g) V + o9
oU % T T
h+ — = —g(h+Q)w———+—
( Q)Vay fVih+Q) —g(h+Q) - 55
Notice that by (5-69), the first, third, and fifth terms sum to O if we assume
that temporal changes in bed elevation are negligible. Therefore, after dividing by

(h+¢), (5-79) reduces to:

U U U . 9 1
a Vet Vay TV 8 prg (e o2

By a similar derivation the y-directed momentum equation may be found to
be:

VB

ot ox 9y —fU_gB_y_ p(h+0) ) (5-81)

(Toy =Ty

Equations (5-69), (5-80), and (5-81) contain six unknowns, U, V, {, h, 1,, and
T,. These are reduced to three unknowns, U, V, and {, by appropriate boundary
conditions. Still water depth k is specified for the particular bathymetry to be sim-
ulated. Bed shear stress T, is expressed in terms of depth mean velocity U or V,
with the “law of the wall.” This law expresses the time-averaged turbulent flow
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velocity u as a function of distance from a wall z which in this case is the sea bed.
It takes the form:

U*1 z
u = —log— 5-82
” gza (5-82)
where: U = shear velocity,
¥ = von Karman’s constant (equal to 0.4 for clear water),
z, = roughness length.
The depth mean velocity is defined as:
) ¢
U= Judz (5-83)
(h+¢)
—h
or substituting in (5-82):
U U, log X d
=— |log> 5-84
(h+g)1cJ. gzo z -84
—h
Solving for 1,,/p gives:
2
Tox h+Q)x
= BGUL Y (5-5)

Yy
log—d
fon0

where: A = nondimensional friction coefficient =

£
C = Chezy C. ¢

In two dimensions, the equation becomes:

T
2 = AUNU?+ V2 (5-86)

and

. .
2 = AVJUR + VP (5-87)

p

Surface shear stress due to wind is expressed by the quadratic forms:

1sx 2 2
o= KWW W, (5-88)

and
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T
%y = kW, W+ W? (5-89)

where: k = friction coefficient,
W = wind speed measured 10 m above sea surface,
p = water density.

As might be supposed, this equation set cannot be solved analytically, and’ as
before we must turn to a numerical solution scheme.

Solution Schéme

The solution scheme, first presented by Koutitas (1988), is of finite difference
type and chosen on the basis of its simplicity. The flow domain is discretized by a '
square horizontal grid of nodes Ax and Ay apart where Ax = Ay (Figure 5-19).
Water surface elevations, {, are computed at mesh centers, and U and V velocities
are computed on alternate mesh sides. This geometry has the advantage that it
economizes on the number of variables to be computed, being four times less than
if all three variables were computed at each site. Nodes in the x direction occur at
increasing distances from the origin at i = 1Ax to mAx and in the y direction at
J = 1Ay to nAy. U and V are calculated at times n = 1At to kAt whereas ( is calcu-
lated at n = 1/2At to (k+1/2)Az. In other words, at any timestep n, C"“lz is calcu-
lated first using the values of U” and V", and is then used in the equations to

1 2 3 4 5

Figure 5-19  Discretization grid for 2-D circulation model.
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calculate U"+!and V"*!(where the superscripts refer to timestep). This procedure
leads to increased numerical stability.

The finite difference forms of (5-80), (5-81), and (5-69), are:

n 2 n
Un+1 U’; SA |:(Ul+1]+Uij) -(Un+Uln 11)2] 2A Vlj(UzJ+1 ij—l)
5-90
gAt nel o nsl 28AtUnW 7 e
B T +ALf V]
Ax \°Y J Cz(h +hz 1_1)
n+ 1 At 7 n Vn Un
Vit = Vi gag LV + VD = (Vi v )1 - Viey= iy
— (5-91)
ghr( ney  nvd) 2gAtVi (Tf +Vy) AT
_A—y g,‘j T Si-1) T c? ~ AUy
(h +hu 1)
3.1
n+§‘ "n+i n+1 n+1
Gyj =Qij _——[U!“‘lj(h Thio) = Uiy (b)) (5-92)
5-92
A AL [anﬁ}l(hzj+h1]+1) Vn+1(h +h’-’ 1)]
where:
3 (Vi + Vi + Vi + Vi )
V:_;_: . J 4!1 o (5-93)
n (U + U+ UG+ U ) (5-94)
ij

4

As can be seen, this is an explicit finite-difference scheme. The values of the
dependent variables at the new timestep can be computed directly from known
values at the present timestep, thereby eliminating the need to solve a set of equa-
tions by matrix inversion. The penalty paid for this simplicity is a limitation in
our choices of Ax and Atz. To preserve numerical stability, the Courant-Friedrichs-
Lewy (CFL) criterion must be met:

AtJ_
J_Ax

(5-95)

Remember that ./gh is the speed of a shallow water wave. This condition speci-
fies then, that the timestep must be less than the time it takes for a wave to move

between grid points. The ﬁ arises because waves travelling at 45° pass grid

points at distances of ﬁAx.
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Table 5-5

Values of nb defining
various types of boundary
nodes.

]
[S)

WO -J0 Utk wWNH

boundary type

island

land to west

land to south

land to west and south
sea to west

sea to east

sea to north

sea to south

sea to west, land to south
sea to east, land to south
sea to north, land to west
sea to south, land to west

While it is clear how (5-90) through (5-92) can be applied to grid points in the
computation field away from the coast, it remains for us to specify how to treat
the solid and open boundaries of the computation domain. Just as in the one-
dimensional cases discussed earlier, additional information, that is, boundary con-
ditions, must be supplied to define the functions of integration. For coastal bound-
aries parallel to the x axis, the boundary condition is that V:; = 0; for coastal
boundaries parallel to the y axis, U;;. = 0. This is equivalent to assuming that the
boundary is completely reflective, and while this is not strictly true, neither is it
seriously in error. Along boundaries of the computation domain that are open to
the sea, either the water surface elevation or velocities must be given through all
time. Usually the water surface elevations are known, say from tidal stage gauges,
and only techniques for specifying them will be pursued here. Either the total c_,l'.;.
time series at the boundary is known, or only the incident part of it, ¢} = g:’j -G,
where {, is the elevation of the wave radiating seaward from within the computa-
tion domain (say from reflection off the coasts). Just as in the previous section,
the elevation component of the radiated wave can be estimated from the theory of
linear long waves:.

o¢

where: ¢ = celerity of shallow water wave,

n = unit outward vector.

Likewise, the associated water velocities can be estimated from the conservation
principle for a moving surge:

(5-97)

where: U, is the velocity normal to the boundary.

Equations (5-90) through (5-97) and associated coastal boundary conditions
have been formulated in a FORTRAN computer program (Program 20) following
Koutitas (1988) to compute wind-driven and tidal flows in shallow seas of arbi-
trary geometry. The program first opens an input file named INPUT.DAT to read
such constants as the time and space steps, friction coefficients, wind speeds in
the x and y directions, Coriolis parameter, numbers of nodes in the x and y direc-
tions, number of time steps, number of boundary nodes for which boundary infor-
mation is needed, timestep multiple at which dependent variables are to be printed
out, and the amplitude and period of the incident waves (assumed to be of simple
sine form). '

Next, the program reads the starting (is) and ending (ie) nodes of the computa-
tion field in the east-west direction, x, for each line in the north-south, y, direc-
tion. After that, the i and j numbers of the boundary nodes along the west and
south sides of the grid are read along with an integer specifying the type of
boundary as defined in Table 5-5. Next, the program assigns still-water depths to
each node, calculates wind shear stresses, and sets all arrays to zero. The remain-
der of the program consists of a large loop that solves the equations for U, V, and
{ at each timestep, and prints values to their respective output files.
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Table 5-6

Main data for Experiment 5-5.

Some Examples

Experiment 5-5: Circulation in Response to Steady Wind

The first example demonstrates a temporally evolving nonuniform flow field in a
rectangular coastal embayment driven by a steady, uniform wind (Figure 5-20).
The embayment has been discretized into 625 cells, each 10 km on a side. The
bathymetry consists of a seaward-sloping plane 6 m deep at the head, and 30 m
deep at the entrance. A uniform wind stress of W, = W, = 10 m/s is applied to still
water at ¢t = 0. Other important variables are given in Table 5-6.

Figure 5-21 gives mesh diagrams of the water surface elevations and the verti-
cally averaged velocity fields as they evolve. In response to the shear stress of the
wind, water begins to flow towards the downwind corner of the basin, where it
piles up. By timestep 400 (3.33 hours), flow velocities have increased from zero
to a maximum 0.12 m/s and are parallel to the wind except near the coast. With

Time step time, the water surface deforms into a roughly uniformly sloping plane, 1.3 m
dt(s) 30 above still water level at the downwind corner, and 0.3 m below sea level at the
Space step upwind corner (Figure 5-21b). Due to the sloping bed, flow velocities evolve
dx(m) dy(m) 10000 toward a steady state pattern involving a clockwise circulation with inflow on the

o west and outflow on the east (Figure 5-21c). In regions where the U and V veloci-
Wind friction coeff. 5410 ties and lateral gradients are small, the steady state geometry of the water surface
s is brought about by a balance between the wind shear on the water surface and the
Chezy coeff. pressure gradient due to the sloping water surface. This is easily seen from (5-69),
cim!’2 1) 0.01 (5-80), and (5-81), which reduce to:
Coriolis parameter
f(s'1) 0.0001 0=- ga_g + _1_1; (5-98)

ox p(h+g) =
Amplitude of incident
long waves ampl(m) 0
0
Period of incident 0=- g—g + —1——~'cs (5-99)
long waves (per s) 0 dy p(h+g) ¥
6
- Y12|s |8 |8 |8 |8 8|8
open lbour}dary' [ 30m
S
1 2 3 4 5 6 7 8 9
Figure 5-20 Geography and mesh for Experiment 5-5.
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A) 30 seconds (Timestep 1)
B) 3-1/3 hours (Timestep 400)

)

Water surface and circulation fields for Experiment 5-5 at timesteps: A) 1 (30 s

B) 400 (3.33 hours), and C) 2000 (16.67 hours).
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C) 16-2/3 hours (Timestep 2000)
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Figure 5-22  Water surface elevation through time at grid point (15,15) in Experiment 5-5.

These equations have the solution:

Tsx Tsy

= +
pe(h+q) " pg(h+9)’

S (5-100)

showing that the water surface elevation is linearly proportional to the wind stress
and location. In regions where U and V and their gradients are not zero, the force
balance is between the pressure gradient and all the other terms in (5-80) and
(5-81).

Close inspection of the water surface at timestep 400 reveals a series of subtle
waves superimposed on the tilting surface. These are damped inertial oscillations
called seiches, created by the sudden application of an impulse from the wind at
t = 0. The seiches are best revealed by a plot of water surface elevation at a point
through time (Figure 5-22). For those interested in their origin, Csanady (1982)
gives a clear account. Thus we see that the response of a basin to a sudden wind is
the development of wind setup and inertial oscillations of slowly decaying ampli-
tude.

Experiment 5-6: Circulation in the Western Interior Seaway

The Cretaceous Interior Seaway of North America was a large epicontinental sea
which flooded a foreland basin east of the Cordilleran thrust belt (Figure 5-23).
Fluctuations in eustatic sea level, tectonism, and climate caused the geography
and bathymetry of the seaway to vary, sometimes producing a 1000-km-wide
epeiric sea connecting the Boreal and Tethys Oceans, and at other times eliminat-
ing the seaway completely. Such large changes must have caused the circulation
to vary widely, in turn varying sedimentary processes as well.
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Figure 5-23

Table 5-7

Main data for Experiment 5-6.

Time step dt(s)
Space step dx(m)
Wind friction coeff. cs

Chezy coeff. cf
(m112 3-1)

Coriolis parameter f
()

Amplitude of incident
long waves ampl(m)

Period of incident
long waves per(s)

7
100000
5% 100

0.01
0.0001
1.0

44640

Cretaceous Interior Seaway of Western North America at an instant in Late Albian
time (after Scott and Taylor, 1977).

In Experiment 5-6 we explore the tidal circulation that may have occurred
during transgression of the Tethyian Ocean northward. The general dimensions of
the seaway are based on estimates from outcrop studies, with detailed paleogeog-
raphy and paleobathymetry ignored to simplify the interpretations. The paleo-
geography represented here (Figure 5-24) portrays an intermediate stage in the
sea’s transgression, with bathymetry consisting of a uniform slope from 64 m to
400 m south. An incoming tidal wave of M, type, with a period of 12.4 hours
(44,640 s) and amplitude of 1 m, was applied at the southern boundary. Other
parameters are given in Table 5-7 and Table 5-8.

Results (Figure 5-25) are plotted every 1000 timesteps (1.94 hours) for a 17.5-
hour period, starting at the time of high water of the incident wave (timestep
10000). Notice that the tidal wave crest sweeps counterclockwise around the mar-
gin of the seaway, exiting to the Tethyian Ocean on the western side of the
entrance. The crest is highest along the coast and decreases into the center of the
seaway. These are classic Kelvin waves, topographically trapped along the coast
by the Coriolis force. The tidal ranges around the basin (Figure 5-25) are higher
along the eastern margin compared with the western margin due to frictional
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Figure 5-24  Finite-difference grid for Experiment 5-6, simulating southern entrance to
Cretaceous Western Interior Seaway of North America.
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Figure 5-25  Results for Experiment 5-6 plotted every 1000 timesteps (1.94 hours) for a 17.5-
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continued
2-D, UNSTEADY, NONLINEAR TIDAL AND WIND-DRIVEN COASTAL CIRCULATION

Figure 5-25
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Table 5-8
Input file INPUT.DAT for
Experiment 5-6

7.0 100000.0 0.000005 0.01 0.0

0.0 0.0001 10 22 24000 26

100.0 1.0 44640.0
\dt,dx,cs,cf,wx,wy,f,

imjm,nm kb,dat,ampl,per

29 \is(§),ie()

29

29

29

29

39

39

48

48

48

48

58

58

58

58

58

57

57

56

56

56
2/\2\\ >
12, -
\ib(k),jb(k),nb(k)
232
242
252
362
372
482
492
4102
4112
5122
5132
5142
5152
5162
5172
5182
5192
5202
328
428
528
628
728
828
928

losses. The closest modern example is the tide of the North Sea, which enters
from the north, tracks south along the east coast of Britain, crosses the straights of
Dover, and travels north along the coasts of the Netherlands and Germany, all the
while decreasing in height.

Notice also that the ranges exhibit two lows and are highest at the head of the
embayment (about 1.5 m). This reflects a standing wave system superimposed on
the progressive Kelvin wave. The reason for this standing wave is that the two
waves traveling in opposite directions interfere with one another. The high ranges
at the head are a result of convergence effects, as discussed earlier in this chapter,
and constructive interference of the inbound and cutbound waves [see Pond and
Pickard (1983) for more on tidal resonance].

Thus we conclude that the tides in the southern limb of the Western Interior
Seaway acted as a mixture of progressive Kelvin waves and standing waves. The
highest tidal ranges, and therefore the greatest probability for tidal environments
(all other factors being equal), would be at the head of the embayment and along
the southeastern coast.

WIND-GENERATED WATER SURFACE WAVES

The drag of the wind over water creates water surface waves, which in the area where
waves are generated are called seas, and out of the generating area are called swell.
Because gravity is the restoring force, these are also called gravity waves. If the distri-
bution of ocean surface wave energy is plotted over the whole frequency band from

1078 to 10? cycles per second, it is clear that gravity waves with frequencies in the
range 1/5 to 1/15 (that is, with periods of from 5 to 15 seconds) contain most of the
ocean’s surface wave energy. It should come as no surprise that waves are very impor-
tant in shaping coastlines and transporting sediment on shallow marine shelves.

In this section, we start with a general description of gravity waves. To keep the dis-
cussion simple, the usual assumptions will be made: (1) the waves can be considered as
small perturbations of a fluid otherwise at rest; (2) fluid density is constant; (3) the fluid
is inviscid (lacks viscosity); (4) the seabed is nearly horizontal (slope less than 1 on 10)
and impermeable; (5) the waves are plane and long-crested, and (6) Coriolis effects and
surface tension can be neglected. These assumptions allow the derivation of small-
amplitude, or linear wave, theory, first obtained by Sir George Biddell Airy in 1845. Sir
George was Lucasian Professor of Mathematics at Cambridge and the seventh Astrono-
mer Royal.

Next, we will present some empirical functions which predict the wave field arising
under a cyclonic wind field. This requires first deriving the cyclonic wind field model,
and then the wave field model. Of course, more sophisticated wave prediction models
exist, but these are beyond the scope of this book. After wave generation, we treat wave
transformation. It is well known that waves change their speed, direction, wavelength,
and height as they travel over a submerged topography. Predicting a wave field and its
effect on bed sediment therefore requires a model of wave shoaling and refraction.
Finally, we consider sediment transport under a combined oscillatory-unidirectional
flow.

Simple Periodic, Progressive, Linear Waves

Simple periodic waves in a particular water depth can be characterized by the dis-
placement of the water surface, wavelength, amplitude, period, and speed of forward
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Figure 5-26

Definition sketch for simple progressive waves.

propagation, also called celerity, as functions of x and ¢ (Figure 5-26). Wave the-
ory defines the functional relationships among these variables. Airy wave theory
accomplishes this task by using the continuity of mass equation, Bernoulli’s equa-
tion, and a constraint that the solutions should be simple harmonic functions in
time. If you remember from (5-8), the continuity equation written for the region
~h < z<n in Figure 5-26 would be:

du  ow _

a—x+a—Z =0 (5-101)

Airy, following the method of Laplace, then postulated the existence of a
function ®(x,z,1), called the velocity potential, which satisfied the mathematical
conditions that:

= 0P d = o® 5-102
u——aan w—a—Z (_' )

Substituting (5-102) into (5-101) yields the Laplace equation:
I 2%

a? + 9 0 (5-103)
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The Laplace equation is used frequently in studies of heat, sound, light, and
hydrodynamics, as might be expected for an equation describing conservation of a
property.

Two boundary conditions are needed to solve (5-103), one at the bed and one
at the water surface. Airy assumed that no flow would occur into or out of the bed
and therefore he wrote the bottom boundary condition as:

oD
w=-— =0 onz=-h (5-104)
0z

To obtain the boundary condition at the water surface, Airy used Bernoulli’s
equation, which you might remember from Chapter 4. Here it is written for two
dimensions and unsteady flow:

_;D+%(u2+w2)+§+gz=0 (5-105)
where: a = velocity potential,
u and w = x- and z-directed fluid velocities,

p = fluid pressure,

p = fluid density,

‘g = gravitational acceleration.
Airy assumed that the velocity terms in (5-105) are small with respect to the other
terms. By definition, the fluid pressure at z = 1 is zero, thereby leading to:

109
n= gé_t onz ="M (5-106)

To make (5-106) readily usable, Airy assumed that the waves were small enough
that satisfying the boundary condition at z = 0 is approximately equivalent to sat-
isfying it at z = n}, yielding:

100
= 23t onz=0 (5-107)

Airy solved (5-103), (5-104), and (5-107) for the velocity potential, ®, obtaining:

_agcoshk(h+2)

S coshih cos (kx — or) (5-108)

where: a = wave amplitude,
g = gravitational acceleration,
cosh = hyperbolic cosine,
k = wave number, equal to 2n/L,
h = water depth,
z and x = locations as defined in Figure 5-26,
¢ = wave angular frequency, equal to 2n/T,
t = time.

All of the functional relationships among a wave’s wavelength, period, celer-
ity, water depth, and so on are obtainable from (5-108). For example, to obtain
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Table 5-9 Relationships predicted by Airy wave theory

Parameter General Expression

Surface elevation, 1\(x,?) n= %Icos (kx — ot)

Phase velocity, ¢ C = 8Z tanh (2™
ase velocity, = 2—75 T)
Wavelength 2 L = 8L tanh (27
avelength, = 5 ( T)
Horizontal orbital d= cosh [k (z,+h)]
diameter, d - sinh (kh)
Horizontal orbital u = nHCOS}.l Lk(z+h)] cos (kx — ot)
velocity, u Tsinh (kh)

Nn(x,1), one substitutes (5-108) into (5-107) and differentiates with respect to time
after setting z equal to zero. The result is given in Table 5-9 along with other
important relationships.

Reflection on the general expressions in Table 5-9 should convince you that two
end members of simpler solutions exist, one for deep water where 4/L > 1/2, and
one for shallow water where A/L < 1/25. For example, in deep water, tanh(2nh/L)
approaches unity and wave celerity reduces to C = g7/2m.

In subsequent discussions it will be important to determine how wave charac-
teristics such as wavelength and celerity vary as a wave travels into shallower
water. This task is greatly simplified by a fact of some consequence: the wave
period is independent of the depth for a simple harmonic wave train.

Predicting Waves from a Wind Field

Predicting a wave field from a wind field is a burdensome business. The mecha-
nisms of wave generation by wind are not completely understood, and the pro-
cesses of energy gain, transfer among wave frequencies, and dissipation by
breaking and bottom friction are numerous. To make matters worse, in areas of
geometrically complex winds, the wave field may consist of waves of varying
heights and frequencies traveling in directions that box the compass. It is not sur-
prising, then, that numerical codes for waves used by the superpower navies run
to tens of thousands of lines.

As we have seen before, however, simpler prediction schemes are available if
we sacrifice some accuracy and generality. In wave prediction, these schemes rely
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upon empirical relationships between the dependent variables of wave energy or
height, wave period, and wave direction as functions of the independent variables,
wind speed, duration, fetch, and water depth, where fetch is defined as the region
over which the wind shear is applied to the water surface. The approach presented
here is limited to calculating wave conditions due to hurricanes. We think the bulk
of shallow marine sediment is distributed around sedimentary basins during
cyclonic storms such as hurricanes and typhoons because sediment transport is
proportional to a high power of bottom flow velocity. Fair weather processes may
occur most of the time, but they accomplish little sediment transport.

We first calculate a cyclonic wind field, and then calculate the wave field
under it, using equations derived by the U.S. Army Corps of Engineers at their
Coastal Engineering Research Center in Vicksburg, Mississippi.

Predicting the Wind Field for Cyclones

In the circulation model presented earlier in this chapter, it was necessary to spec-
ify the wind velocity at each node in the computation field as a boundary condi-
tion. We could do the same to compute the cyclonic wave field, but this method of
setting the wind boundary condition is not particularly useful if we want to simu-
late storms where the wind fields are elliptical. Here we present a mathematical
model of a hurricane’s surface wind field. The model is due to V. A. Myers as
described by Harris (1958) and presented in the Shore Protection Manual (Anony-
mous, 1984). The gradient wind speed at a radial distance r from the storm center
in SI units is:

2 "R

1 R
8r —
T +ngr - E_ (Pn—po) ﬁe

a

r

(5-109)

where: f = Coriolis parameter,
P, = air density,
P, = pressure at outskirts of storm,
p, = central pressure,

R =radial distance from storm center to region of maximum
wind speed.

The wind speed calculated in (5-109) is called the gradient wind speed
because it is due to the pressure gradient alone. If the storm is moving forward,
then a correction term is needed, because windspeeds to the right of a storm track
(in the northern hemisphere) are always observed to be higher than those on the
left. Simple vector addition will not do, because the effect of storm motion on the
wind field seems to decrease with distance from R. One correction term in com-
mon use is:

Rr
Ugy(r) =
sm R +r

Ve © (5-110)

where: Ugy,(r)=term added vectorially to wind velocity at each value of ,

Vg=velocity of storm center.

These equations have been coded in Program 21 along with input-output state-
ments, to provide a module for driving water circulation and wave generation.
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Texas

September 4, 1973

Figure 5-27
Detailed storm track for Tropical Storm Delia near
Buccaneer platform on September 4, 1973.

Experiment 5-7: Calculating the Wind Field under Tropical Storm Delia

As an example of the wind field created by the above algorithm, consider Delia, a
tropical storm which came ashore near Galveston, Texas, in September 1973 (Fig-
ure 5-27). Delia passed over an oil drilling platform named Buccaneer, located in
20 m of water off Galveston, where a wind gauge recorded its passage. The wind
speed recorded at Buccaneer on September 4, 1973 at 1300 hours was 40 knots
(18 m/s). The computed wind speed is obtained using the recorded pressure differ-
ential, storm speed, and other variables at 1300 hours as given in Table 5-10. The
computed winds show the characteristic hurricane pattern, with higher winds to

Table 5-10 Experiment 5-7 input file for computation of Tropical Storm Delia’s wind field

125 25 10000.0 10000.0 /LMAX,IM,JM,DX,DY
12122 /MCENT,NCENT,LSC
5.6 180.0 99800.0 101200.0 64400.0 3000000.0 0. \SVEL,SDIR,PCENT,PEDGE,RMAXW,SRAD,DEFCON
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Figure 5-28

Experiment 5-7 computed wind field for Tropical Storm Delia at 1300 hours on
September 4, 1973, as it moves almost due west. Magnitude of vector at node
(14,1) south-southeast of the eye is 15.9 m/s.

the right of the storm when viewed down the stormtrack (Figure 5-28). The com-

puted wind speed at Buccaneer is 20 m/s, which compares favorably with the
observed of 18 m/s.

Predicting the Wave Field for Cyclones

Now that the cyclonic wind field is known, it would seem simple to predict the
wave field. We might use any of the published relationships between wave charac-
teristics of the fully developed sea and wind speed, duration, and fetch. The prob-
lem arises, however, that the large changes in wind speed, fetch, and duration
under a cyclone do not allow a fully arisen sea state to develop. Furthermore, the
wave field at any particular site will consist of a locally generated sea and a swell
from other parts of the storm. Our solution is to use an empirical model derived
by the U.S. Army Corps of Engineers (Anonymous, 1984).

The equations presented below predict the deep-water significant wave height
and period at the point of maximum wind in a slowly moving hurricane. Signifi-
cant wave height Hy/; is defined as the average height of the one-third highest
waves. Significant wave period is approximately the average period of 10 to 15
successive prominent waves. As noted above, the point of maximum wind occurs
to the right of a storm moving away from an observer in the northern hemisphere.
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The equations are:

= 0.29a.V,

H, 5 = 5034 [l ——F} G-111)
JUx
RAp

— 0.145aV

| = 8.6¢%% [1 + —_—F} (5-112)
NUg

Uy = 0.865U,,,,+ %VF (5-113)

where: H, ,3 = deep water significant wave height in meters,
T, = corresponding significant wave period in seconds,

R = radius of maximum wind in kilometers,

Ap =normal pressure (760 mm of mercury) minus central
pressure of hurricane in mm of mercury,

o = coefficient depending upon forward speed of the hurri-
cane; for slowly moving hurricane, o = 1.0,

Vg = forward speed of hurricane in meters per second,

Up = maximum sustained windspeed in meters per second,

calculated for 10 meters above mean sea surface at
radius R, and

U,ux = maximum gradient wind speed 10 meters above water
surface calculated from (5-109) and (5-110) when r = R.

Note that these equations are a dimensional mixture; millimeters of mercury, kilo-
meters, and meters are all combined, but Ap in Pascals is converted to Ap in milli-

meters of mercury when multiplied by 7.5 x 1073,

Equations (5-111) through (5-113) give us the wave height and period at one
point under the storm. The wave characteristics at other points are found by
reducing these values according to two empirical functions determined by the
Coastal Engineering Research Center of the Army Corps of Engineers (Anony-
mous, 1984). Figure 5-29 presents isolines of significant wave height relative to
the maximum value at the point of maximum wind. Wave periods are calculated

from an empirical equation:
. 7

The wave directions are wind directions computed in the previous section.
These relationships are coded in FORTRAN in Program 22.
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Figure 5-29

Isolines of relative significant wave height for slow-moving hurricane. Relative
wave height is the ratio of wave height to maximum wave height. r = radius of
interest; R = radius of maximum wind. Origin marks eye of storm traveling north
(Anonymous, 1984).

Experiment 5-8: Calculating the Wave Field Under Tropical Storm Delia

As described above, Tropical Storm Delia passed near an oil drilling platform,
where in addition to meteorological instruments, a wave staff and three electro-
magnetic current meters had been installed, thanks to G. Z. Forristall and col-
leagues of Shell Development Company (Forristall, Hamilton, and Cardone,
1977, Forristall, Ward, Cardone, and Borgmann, 1978). The observed wave field
during the passage of Delia (Figure 5-30) consisted of 2.9 m waves at 0600 hours
on September 4, 1973, that increased to 4.9 m waves at 1300 hours, and then rap-
idly decreased to 2.4 m waves after 1800 hours. Figure 5-27 shows that at 1300
hours the storm’s eye was about 45 km southeast of the platform and was heading
due west. The radius of maximum winds for Delia was about 64 km. Thus, from
0600 hours to 1300 hours, the seas around Buccaneer Platform were subjected to
increasingly higher wind speeds to the right of the storm as viewed down its track.
From 1300 to 2400 hours wind speeds decreased as the eye moved within 10 km
of the platform. Although it would be easy to simulate the temporal evolution of
the wave field, we will leave an exercise of that type to the reader. Here, we will
predict the significant wave height at 1300 hours.

WIND-GENERATED WATER SURFACE WAVES 147



6 September 4, 1973

—_ o

E °®

= 4 °

-g, o® ... ®

° o*d

b o ® oo.

)]

3 ®evec 000

2 24
Figure 5-30
Significant wave height at Buccaneer 0 | | :
platform during the passage of Tropical
Storm Delia. See Figure 5-27 for location of 0000 0600 1200 1800 2400
platform with respect to storm track.

Time

Table 5-11 Experiment 5-8 input data file simulating the wave field under Tropical Storm Delia at

1300 hours on September 4, 1973.

18.1 64400.0 23.0 5.6 25 25 10000.0 10000.0 120000.0 120000.0 180.0
\Umazx,R,deltap,Vsubf,im,jm,dx,dy,x0,yo0,sdir

The input data are contained in Table 5-11, and a contour plot of computed
significant wave heights is contained in Figure 5-31. The computed significant
wave height is near that observed. The computed significant wave period obtained
with (5-114) is about 9.5 seconds

Wave Transformations

The reader may have noticed that the wind-sea model discussed above predicts
deep water significant wave characteristics. The sedimentary geologist wants to
know how these waves will interact with the bed, and therefore must know their
shallow water characteristics. Inspection of relationships in Table 5-9 will show
that waves are transformed as they travel into shallower water. Their wavelength
decreases, and because their period remains constant, their phase velocity C must
also decrease. If sections of a single wave crest are traveling in different water
depths, the sections in deeper water will travel further per unit time, and therefore
the wave will change direction or refract. Wave height will first decrease slightly
and then increase rapidly as still shallower water is reached. This increase is
called shoaling. The combination of increasing wave height and decreasing wave-
length leads to steeper waves which ultimately break. In addition, energy is dissi-
pated due to bottom friction. The latter is not predicted by Airy theory, however,
because it assumes an inviscid fluid. Finally, in selected situations, such as when
waves pass a small island, diffraction occurs, which is a lateral transfer of energy
along wave crests.
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Experiment 5-8 computed significant wave heights at

I13 3(|)_0 hours, September 4, 1973, under Tropical Storm
elia.
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Here, we" ptesént a two-dimensional wave transformation program that
accounts for refraction, shoaling, and breaking, but ignores diffraction and bottom
friction. This is not severe because these last two processes are of lesser impor-
tance. The focus is not on wave crests but on wave rays, which are lines orthogo-
nal to crests.

Deriving the model involves the path of the wave ray (Figure 5-32). By intu-
ition, we know that the wave ray in Figure 5-32 must turn through some angle, d6,
as the wave front crosses bottom contours obliquely. The front to the left of the
ray travels through shallower water and therefore its phase velocity is slower than

y
de
S
wave ray
n
o bottom contour
Waye f’Ont shallowing
Figure 5-32
Definition sketch map for wave refraction in
which ray of refracting wave propagates
toward shore. —
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the front on the right. By geometry, the amount of turning per unit time is equal to
the velocity gradient along the wave front, or:

de dc
_— = — 5'11
dt dn (5-115)
By definition, dt = ds/C, and (5-115) can be written as:
do 1dC
— = == 5-11
ds Cdn (5-116)

For the derivative with respect to n, it is easier to work in the x-y coordinate sys-
tem. By trigonometry, (5-116) becomes:

a8 1 oC. aC
i E(a sme—a—ycose) (5-117)

and:
dx _ dy .. g
pri Ccos0 and y7i Csin® (5-118)

Equations (5-117) and (5-118) provide the necessary relationships for calcu-
lating the path of an advancing wave ray through a field of variable phase velocity
C(x,y). You may ask how do we know the phase velocity as a function of x and y
location? That comes from the celerity equation in Table 5-9, given water depth at
each x- and y-coordinate pair.

As we might expect, there is no known analytical solution to (5-117) and
(5-118) for an arbitrary phase velocity field, but numerous finite-difference solu-
tion schemes exist because the refraction problem is important in coastal oceanog-
raphy and engineering. Here, we use a scheme of Koutitas (1988). The area of
interest is discretized into rectangular cells Ax and Ay on a side (Figure 5-33). The
finite difference form of (5-117) is:

ontli-gr = As(i (a—C sinG"—a—C cos0)) (5-119)
c" dx dy

where As = AtC" and n refers to the nth node along the wave ray. The spatial
derivatives of C are approximated as:

aC _ Ciorj—Cicyy and a_C _ Cije1=Cij

ox Ax,+Ax,_

= Mt b7 (5-120)
. oy Ay;+Ay;_4
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Figure 5-33

Finite-difference grid for wave refraction model.

Rarely will the location of the nth node coincide with the grid nodes, and
therefore values of C and its gradients must be interpolated. Koutitas accom-
plishes this using the following function:

ff=F;8-DM-1)~f, M- +fiy ;0 ln+fi;-m@E-1)  (5-121)
where { and m are defined in Figure 5-33.

Following computation of 8"*1, the x and y location of the n+1 node is
obtained from finite difference formulations of (5-118):

en+en+l
2

n+1

x = x" + Ascos ( ) (5-122)

en+9n+1
2

y*+1 = y" 4 Assin ( ) (5-123)

The preceding equations are encoded in FORTRAN in Program 23.
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Experiment 5-9: Example of Wave Refraction

Even a casual observer of shorelines often notes that shores tend towards straight
or smoothly curving arcs. This geometry stems in part from the effects of wave
refraction, as the following example shows. Consider a hypothetical unconsoli-
dated shoreline that consists of a sinusoidally corrugated surface plunging off-
shore at a few degrees, as shown in Figure 5-34. An offshore wave field
approaches the coast with crests parallel to the average shoreline trend. They
refract as they shoal, following rays computed in Program 23 using the input file
in Table 5-12.

The results are plotted in Figure 5-34 as wave rays starting at selected sites
offshore. Note that the headlands and corresponding offshore submarine highs
refract the rays towards them, whereas the shoreline embayment repels the rays.
Now remember Green’s theorem (5-58), which states that if the total energy of a
shallow water wave remains unchanged as it shoals, then its amplitude increases
as the crest is compressed and water shallows. Applying Green’s theorem to a
wave segment defined by two rays, we see that wave energy is concentrated on the
headlands and offshore shoals. The net effect is to erode sediment there and trans-
port it to the embayments by longshore drift, thereby straightening the coastline
through time.

Table 5-12

Experiment 5-9 data input file for wave refraction example.

im,jm,nm: # nodes in x and y; # computed orthogonals (I5) > 50<> 50<> 8<
Timestep in seconds (F10.3) and method of bathy entry > 10.0 < > 2<
dm (F10.3) > 50.0 <

deltax and deltay (F10.3) > 400.0 < > 400.0 <

Wave period and max # of apexes (F10.3 and 15) > 10.0 < > 500<
2000.0 1000.0 90.0

4000.0 1000.0 90.0

6000.0 1000.0 90.0

8000.0 1000.0 90.0

10000.0 1000.0 90.0

12000.0 1000.0 90.0

14000.0 1000.0 90.0

16000.0 1000.0 90.0
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CHAP. 5 DISTRIBUTION OF SEDIMENT IN UNDERFILLED BASINS
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Figure 5-34  Wave rays refracting over sinusoidal sloping topography. Contour lines represent
depths in meters.
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