cHAPTER 4

DELIVERY OF SEDIMENT
TO BASINS
BY FLUVIAL SYSTEMS

In this chapter we discuss streams and rivers, the most fundamental agents of
landscape evolution and sediment delivery to basins. Engineers refer to the run-
ning water of streams and rivers as open channel flow, in contrast to pipe flows.
Open channel flows may be unsteady in time, or nonuniform in space, or both.
They may be three dimensional, with significant cross-channel and vertical com-
ponents, and may show abrupt increases in discharge as tributaries enter. And,
they may become even more unconfined during overbank flooding. Understand-
ably, a mathematical model has yet to be devised that incorporates all these con-
siderations. If we accept cross-sectional averages of velocity and water depth,
then the other complexities can be represented with a relatively simple set of
equations.

Like the flow of water in rivers, the flow of sediment in rivers is also unsteady
and nonuniform at different scales of time and space. Sediment is temporarily
stored in the stream bed and stream banks from flood to flood, or century to cen-
tury, as sediment-feed rates and water discharges fluctuate. Even for a given water
discharge rate, transport rates may vary considerably across a stream cross section
as a function of secondary flows, local bed roughness, and upstream availability
of different sediment particle sizes. This complexity has spawned hundreds of
sediment transport equations.

Here we attempt to steer between an understandable but trivial fluvial model
and a realistic but opaque one by following van Niekerk, Vogel, Slingerland, and
Bridge (1992). First, we derive a two-dimensional fluid flow model from basic
principles and present it with a simple application. Then, we discuss the physics
of sediment entrainment and transport. Finally, we couple the fluid and sediment
transport models through an equation describing conservation of the bed, demon-
strating that the coupled model accurately predicts sediment transport rates and
evolution of bed textures for various unsteady, nonuniform naturai flows.

57




MODEL OF 2-D GRADUALLY VARIED FLOW
IN A SINGLE THREAD CHANNEL

First, we derive the set of equations describing one-dimensional, steady, gradually
varied flow. Although technically the equations describe steady flows (where
depth, velocity, and discharge do not vary with time at a point), they also can be
used without gross error to simulate the unsteadiness of flows over “geomorphic
time.” By geomorphic time is meant durations of hundreds to thousands of years
such that a stream bed adjusts much more slowly than the flow in the stream. We
assume that the effects of changes in cross-sectional area and bed slope on the
flow within a timestep are negligible. The set of equations also is limited to grad-
ually varied flows, which are nonuniform flows in which the boundary friction is
dominant in determining the water surface’s profile, in contrast to other forms of
energy losses,

We begin with the set of equations describing the motion of an ideal fluid that
was first published in 1755 by a key figure in eighteenth-century mathematics and
the dominant theoretical physicist of that century: Leonhard Euler (oiler). Buler
should be ranked with Archimedes, Newton, and Gauss, but for some curious rea-
son is not well known outside mathematical circles. Euler was born near Basel,
Switzerland, in 1707, and learned mathematics from John Bernoulli. He began to
publish papers at eighteen, and through the next fifty-eight years poured forth a
fiood of contributions in calculus, differential equations, analytic and differential
geometry of curves and surfaces, the theory of numbers, series, and the calculus
of variations, all at the rate of about 800 pages per year. He created analytical
mechanics. He investigated the bending of beams, the propagation of sound, and
musical consonance and dissonance. His three volumes on optical instruments
contributed to the design of telescopes and microscopes. He calculated the pertur-
bative effect of celestial bodies on the orbit of a planet and the paths of projectiles
in resisting media. And he was father of and teacher to thirteen children.

Euler’s fundamental equations for the motion of an ideal fluid describe invis-
cid (i.e., nonviscous or frictionless) incompressible flow. They are simply an
expression of Newton's general law of motion which says states that:

the total time rate of change of a system’s momentum =
sum of forces acting on the system a-1)

Defining the system in the case of fluids is facilitated by considering stream-
lines. Streamlines are continuous and smooth curves, everywhere tangent to the
velocity vectors in a flow. By definition, they cannot cross, and at any given
instant, there is only one set of streamlines for a particular flow. A bundle of
streamlines collected together around a closed curve creates an elementary flow
channel called a stream tube. A segment of a stream tube defines a convenient
system to which the general law of motion can be applied.

To derive Euler’s equations, consider the fluid in a segment of a stream tube
(Figure 4-1). Because density times volume is mass, and mass times velocity is
momentum, the time rate of change of the fluid’s momentum in the s direction is:

d =4y
4 (pdAdsV,)) = £(pV,) dAds @-2)

where: p = fluid density,
dAds = differential volume of fluid in segment,
V, = s-directed fluid velocity.
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Figure 4-1

Derivation of Euler’s equation by application of Newton’s general law of motion to
fluid in a stream tube. Angle between s axis and horizontal is a.

Euler considered the important forces acting on the flnid in the tube segment
to be pressure forces and gravity forces. The net pressure force acting in the s
direction is the difference between the pressures forces on faces 1 and 2 (Figure
4-1). Let us define the pressure at face 1 as p. The pressure at face 2 can be
defined in terms of the pressure at face 1, thanks to Taylor’s Theorem (3-3), as:

dp

and the difference in pressure forces between the two faces, called the net pres-
sure force, is:

4-4
net pressure force = -%dAds @4

where dA converts a pressure to a pressure force.
The gravity force on the flnid in the tube, resolved in the s direction, is

pgdAdssing. Defining sin ¢ in terms of s and z (sino. = %), this becomes:

s-directed gravity force= —p gg—idA {4-5)
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Assembling (4-2), (4-4), and (4-5), according to the general law of motion
(4-1), and assuming that fluid density does not vary in space or time, yields:

—%dAds- psZdAds (4-6)

4 =
4 (pv,) dAds =

which, for an incompressible fluid such as water, simplifies to:

5 1 a
— = —— = + 4
T 5 95 {p+pgz) (47
- . dVS .
Next, the total time derivative, T can be expanded to reveal its two parts: an

acceleration because of passage of time and an acceleration because of the fluid’s
movement through space. This may be better understood by conducting the fol-
lowing “thought experiment.” Consider the changes in outside air temperature
traveling by car from Pennsylvania to Florida in the winter, departing in early
morning. The total change in temperature is a change with respect to time as the
sun heats up the air during the day, plus the change with respect to distance as the
car travels towards lower latitudes where the climate is warmer. The latter rate of
change is a function of the speed of the car. Therefore, the total change may be
written as:

dar  oT oT
i E’+ 35 {(4-8)

where V., = speed of car.

Similarly, the total acceleration of a fluid particle in moving along a streamline in
Figure 4-1 is:

dv; oV v oV
& ¥ + Vs 35 (4-9)
Substituting (4-9) into (4-7) yields the Euler equation of acceleration for an ideal
incompressible fluid:

aV; VaV; _ 1a
5 + 535 - —53;(134'982) {4-10)

The next step in deriving the gradually varied flow equation is to integrate
Euler’s equation, thereby gaining Bernoulli’s equation (named after Daniel Ber-
noulli, the son of Euler’s mathematics teacher, John Bernoulli). The integration is

2
5

> J using the chain rule. Then

easy if the second term in {4-10) is written as %(

(4-10) becomes:

oV, d pr
Py; Tas\ 3 TPTPEL)= Y (a-11)
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If the flow is steady, the local acceleration (first term) is zero, and integration
over s yields Bernoulli’s equation:

pV:

— tptpez =f(H (4-12)
Because this is an integration of a partial differential, it yields a function of

integration. It is a function of time, because although the velocity was assumed to

remain constant with time at all points in the flow, we place no such restriction on

temporal variation in the pressure intensity.

Bernoulli’s equation is one of the most useful relationships in fluid dynamics.
In its above form it states that the kinetic energy of a flow, embodied by the V2
term, varies inversely along a streamline with the potential energy, as embodied
by the pressure and gravity terms. As fluid velocity increases, pressure decreases,
which is why planes fly, volleyballs with top-spin dive to the floor, and pebbles on
a stream bed are lifted.

Dividing all terms by pg, we see that Bernoulli’s equation demands that the
fluid pressure, elevation, and velocity heads along a streamline in an inviscid
(frictionless) flow sum to a constant:

2
$+z+2lg = H, (a-13)

where: p = fluid pressure at point along streamline,

v = fluid specific gravity,

z = elevation of point above datum,

V = fluid velocity (with subscript s dropped for generality),

g = gravitational acceleration,

Hy = total head.

The terms are called heads because they have units of distance. It is this form that
describes open channel flow.

Now, consider a streamline in the x-direction along the bed (Figure 4-2).
Assume that the pressure is hydrostatic in the channel, such that the pressure in
the streamline is:

pP=7 (4-13)

Figure 4-2
Longitudinal section through

open channel.

hypothetical open channel showing
application of Bernoull's equation to an

datum
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allowing us to write:

2

\%s
y+z+ﬂ = Hy (a-15)

This assumption means that bed slopes must be less than about 0.01, because at
steeper slopes the bed is not orthogonal to the gravity acceleration vector. Also,
the vertical fluid accelerations must be negligible.

Now (4-15) does not include frictional losses, because Bernoulli’s equation
was derived for an ideal (inviscid) fluid. The commeon (and quite correct) treat-
ment to overcome this inadequacy is to define a rate of head loss with distance
due to friction as:

dHy _
= =% (4-16)

where: S¢= friction slope or slope of energy grade line.
Then, from {4-15) and (4-16):

2

d Yyoo .
dx(z+y+ 2g) Sy “4-17)
or,
4, Yy Zs -
dx(y+2g) = 8,5 (a-18)
where the bed slope S, 1s defined as:
dz
= —— 4-
S, 7 4-19)

How are frictional losses, represented by the friction slope Sp estimated?
First, it can be shown for both uniform and nonuniform flows that:

T, = pgRS; (4-20)

where: 7T, = mean longitudinal shear stress acting over perimeter of channel,

R = hydraulic radius of channel,
Sy = slope of total energy line or friction slope.

This expression arises from a force balance on a parcel of fluid in the channel. If
the fluid is not accelerating, then the resisting force per unit area, given by T,
must equal the downslope force per unit area due to gravity, which is the right-
hand side of (4-20), if sin « is approximated by tan o, which is Sz Now, as first
pointed out by Newton:

1, = apV’ (a-21)

where: a = coefficient of drag (a dimensionless estimator of friction)
V = an appropriately chosen velocity (in this case the cross-sectional
average).
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Equating (4-20) and (4-21}), and solving for S¢yields:

V2
S.= —— (4-22)
7 R

where: C = g.

a

C is the Chezy constant with units of m!/%/time, named after the French engi-
neer who introduced it in 1768 while designing a canal for the Paris water supply.
Observation of flows in rivers and canals by the 1870s led to the conclusion that C
was proportional to the 1/6th power of the hydraulic radius (defined as cross-sec-
tional area divided by wetted perimeter), with the proportionality “constant”
being a function of bed roughness. In 1891 a Frenchman wrongly attributed this
relationship to an Irishman, R. Manning, and expressed it in the form:

-

R
n

C= (4-23)

where n is now called Manning’s # and is solely a characteristic of channel rough-

g

16, Alternatively, one can express the Chezy C as 8?,

ness. The units of » are m

where f is the dimensionless Darcy-Weisbach friction coefficient.

Finally, substituting (4-22) in (4-18), yields the gradually varied flow equa-
tion, an ordinary nonlinear differential equation:

2 2

d Vv v

Ly+-)=8 —— 4-24

= 2g) o~ G (4-29)
There are two unknowns in (4-24), flow velocity ¥, and water depth or stage y, and
therefore another equation is necessary before (4-24) can be solved uniquely. As
is commonly the case, the other equation arises from the principle of mass conser-
vation:

0 =VA(y) {4-25)

where: Q = water discharge,
A = cross-sectional area of channel (and therefore dependent upon y).

In principle, (4-24) and (4-25) may be solved for V and y as functions of x,
given 0, C, §,, and the channel’s hydraulic geometry as it may vary in x. In prac-
tice, there is no known analytical solution for irregular cross sections, and the
equation set is solved using one of several finite difference formulations. The
scheme presented here is the step method of Henderson (1966).

Consider a typical application as depicted in Figure 4-3. A stream channel has
been surveyed to yield a number of cross sections, thus allowing calculation of
cross-sectional areas and hydraulic radii as functions of water stage or depth. In
addition, the plan of the channel is known, thus allowing bed slopes to be calcu-
lated. Chezy C is also known for each section, having been obtained by estimating
Manning’s » from tabulated values (e.g. Henderson, 1966, Table 4-2). For any
particular water discharge and known flow depth at one cross section, the problem
is to calculate flow depths and velocities at other cross sections. This may be
accomplished by stepping along the channel, one cross section at a time, using
known values of V and y at adjacent cross section JN to calculate the unknown
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Figure 4-3

Example application of the gradually varied flow model. JN is the section number at
the present stage in the computation.

values at cross section JN41. Let JN=1 and assume that the dependent variables
are known there. At section JN¥+1 and subsequent cross sections, (4-15) may be
written as:

v
Hz - y2 + Zz + 2_3 (4‘26)
where z,, the elevation of the bed, is known. If (4-16) is written in finite-differ-
ence form:

= -5, (a-27)

where: Ax = finite-distance between two sections,
it may be solved for H,, yielding:

H, = H)-AsS, (4-28)

Inasmuch as loss due to friction occurs between two cross sections, it is rea-
sonable to calculate the loss as an average of the friction slopes at the two sec-
tions:

Ax
H,=H ~ 5 (Sfl +Sf2) (4-29)

Equations (4-26) and (4-29) give two expressions for A, and the aim of the
computation is to equalize the two values. By guessing at a value of y;, V, may be
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calculated from (4-25) and Sy, may be calculated from (4-22). Then, (4-26) and
(4-29) may be evaluated and compared. If they are not equal, y, is adjusted and
iteration proceeds until convergence. The trick in a numerical scheme is to adjust
y2 by an appropriate amount. By evaluating the conditions under which the error
in H varies as a function of Ay,, Henderson (1966) computed the adjustment as:

Ay, = (4-30)

L5 353K

where H, is the error, or difference between the H, calculated in (4-26) and
(4-29).

The bootstrapping operation described above depends stromgly upon the
hydraulics of the initial stream cross section, and therefore its selection is not
arbitrary. This may be seen by considering a special equation called the specific
energy equation. If the datum is the stream bed, making z everywhere zero, and a
discharge per unit width g is introduced such that V=4/y, then (4-15) becomes:

y+— =E (4'31)

The constant E stands for specific energy.

! Notice that for any particular specific energy and g, this equation is a qua-
dratic in y and therefore possesses two solutions. These are the water depths of
2
sub- and supercritical flow, separated by critical low where % = 1. The latter
8y

expression is a dimensionless ratio called the Froude number, being the ratio of
the speed of the flow to the celerity or speed of a shallow water wave (see Chapter
5 for more on wave speeds). In supercritical flows where the Froude number is
greater than 1, a shallow water wave, or any hydraulic disturbance in general, can-
not propagate upstream, because the medium is moving faster than the wave
speed. The consequence of this is that a supercritical flow can only be controlled
from upstream, whereas a subcritical flow is best controlled from downstream.
Thus the initial cross section from which we launch the computations should be
one which determines a particular depth-discharge relationship in the specific
energy equation. The calculations described above should proceed upstream from
this control section for subcritical flows, and must proceed downstream for super-
critical flows. Typical engineering control sections are weirs and sluice gates. For
our purposes they are artificial cross sections at the boundaries of the stream’s
reach. If by precalculation the flow is expected to be subcritical, the control sec-
tion would be at the downstream end; if the flow is everywhere supercritical, then
the control section would be placed at the upstream end of the model reach.

Equations (4-22) through (4-30) have been encoded in the FORTRAN pro-
gram FLDTA (Program 4) for a variable width, rectangular channel. If an applica-
tion involves irregularly shaped cross sections, functions or look-up tables must
also be supplied that specify how cross-sectional area and wetted perimeter vary
with stage at each cross section.
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Table 4-1

Example input file for Experiment 4-1

101 100. 0.02 number of nodes; number of timesteps; Ax; n
10. 11. 12. 13. 14. 15. 16. 17. 18. 19, cross section widths (m)
10.999897969.59493929.1 elevations above datum (m}

900.0 1.0 location of control section and water depth (m)
25.0 discharge (m® s}

Experiment 4-1: An Example

A reach of a straight, single-thread stream drops from 10 to 9.1 meters in eleva-
tion over a distance of 1000 meters while increasing linearly in width from 10 to
19 meters. The siream’s discharge is uniformly 25 m? s1, and its bed consists of
smooth mud with no weeds, providing a uniform Manning’s » of about 0.02.
Under these conditions, an initial calculation assuming uniform flow suggests the
flow will be subcritical, and therefore the control section should be placed at the
downstream end of the reach. For discussion, let us place it 900 meters down the
reach. The reach is arbitrarily divided into eleven cross sections 100 meters apart,
with widths and bed elevations given in Table 4-1.

The results are presented in Figure 4-4. The flow depths decrease slightly
downstream and then increase to the prescribed value of 1 meter at the control
section. The decrease arises due to the increasing stream width, and the increase
arises because the control water depth demands it. Flow velocities decrease mono-
tonically downstream due to the expanding stream width, but note that the
decrease is nonlinear due to the interaction between the expanding cross section
and backwater from the control water depth.

As mentioned earlier, although this algorithm is for steady flows, it can be
applied to certain unsteady flows where the time step between calculations is
large relative to the time interval of adjustment. For example, if the problem
involves growth of an alluvial fan over thousands of years and the timestep is in
decades, it is reasonable to calculate the flow using this model, erode and deposit
sediment, adjust the bed elevation accordingly, and recaiculate the flow using the
new elevations. An example is given later in this chapter.

Flow Depth (m)

Flow Veloclty (m/s})

1.2 4+——

0 | 200 400 600 800 0 200 = 400 600 800
Distance Downstream (m) Distance Downstream (m)
Figure 44 Plots of flow depth and velocity versus distance downstréam obtained in Experiment

4-1. In (A) flow depth decreases downstream to the control section and then
increases, whereas in (B) flow velocity decreases monotonically.
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PHYSICS OF SEDIMENT TRANSPORT

It could be argued that understanding the characteristics and origin of clastic
strata requires understanding the physics of sediment transport. Given its impor-
tance, we present two formulations here for sediment transport. One is accurate,
general, and complicated, whereas the other is less accurate but simple. The first
can be used with little modification to predict the sediment load carried by turbu-
lent, unidirectional flows, whether in rivers or epeiric seas. The other is restricted
to open-channel unidirectional flows. We start with the first because it illustrates
the physical principles that underlie sediment transport.

Transport of sediment grains can be broken down into four steps, each with its
own mathematical characterization. First, sediment grains must be set into motion
or entrained by a flow. The relationship between a grain’s size, density, and pivot
angle, and the strength of flow at which the grain begins motion is called the
entrainment criterion.

Second, once in motion, grains travel either as bedload or suspended load,
depending on the mechanism of grain support. Bedload refers to sliding, rolling,
and saltating grains that are supported at least in part by collisions with other
grains or by contact with the bed. In water these grains travel within a few grain
diameters of the bed as a low-concentration dispersed grain flow. Suspended load,
on the other hand, refers to grains supported by the mean upward-directed fluid
impulses arising from eddy currents of turbulent flow. As might be expected, the
two loads are calculated differently, and therefore it is necessary to know under
what conditions a grain participates in each. In other words, we need a suspension
criterion.

~ Third, after the grains are assigned either to bedload or suspended load, their
mass fluxes must be calculated as a function of their availability in the bed, the
bed geometry, and various properties of the flow such as the magnitude of the bed
shear stress, the vertical velocity profile, and the water depth. As we shall see, this
calculation requires mathematical specification of the distribution of instanta-
neous bed shear stresses and of the vertical momentum transfer, both of which
arise from fluid turbulence.

Fourth and finally, spatial and temporal variations in entrainment and deposi-
tion cause a bed’s texture, geometry, and composition to evolve. Because these
changes influence the sediment transport, the bed evolution must be calculated
from a bed continuity equation. The four steps and their mathematical character-
izations are considered next in order.

Entrainment Criterion

As discussed above, predictions about sediment transport depend strongly upon
the critical shear stress necessary Lo initiate motion of a specific size-density par-
ticle on a heterogeneous bed. Most sedimentology textbooks today present either
the Shields or Hjulstrom relationship. Unfortunately, neither is appropriate for
grains much larger or smaller than the median size of the bed, because neither
relationship accounts for relative protrusion and grain-hiding effects. Recent work
on entrainment has focused on rectifying this shortcoming.

Consider the torque balance on a grain of diameter D; resting on grains of
diameter Dsj, which is the median size of the bed (Figure 4-5). The grain will
begin to move, pivoting about point A, when the torque due to the fluid force F
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Figure 4-5

Torque balance on grain at threshold of motion. Symbols are defined as follows:
F = fluid drag and lift forces, ¢ = pivot angle, { = angle of fluid force vector with
horizontal, Cg = center of gravity, G = grain submerged weight, D; = diameter of i-th

grain size, ¢ = grain density, a; and a, = moment arms, A = pivot point,
P = protrusion height, and D5, = median grain size of bed.

just exceeds the torque due to the resisting force G. The torque around point A by
fluid forces T is given by:

|T)| = Fascos(o— ) (4-32)

where the variables are defined in Figure 4-5. The torque around peint A due to
the grain’s weight T, is given by:

iT,| = Ga,sina (4-33)

The grain will begin to pivot when |T|| > |T,|, or:

F S a,sinc
G~ acos(a— L) (@-34)

Now, the fluid force vector F is a vector sum of drag and lift forces on the
grain. These can be approximated by the quadratic equation:
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2
F= (Cy+CYpAL | (4-35)
2 y= aD‘

where: (Cp+ C;) = coefficients of drag and lift respectively,

p = fluid density,

cross-sectional area of the grain exposed to the flow, here taken
to be bD;",

Vv = flow velocity at height y=aD;, off bed,
unknown fractional constant,

0
1l

The resisting force G is given by:

G =cD}(c-p)g

{4-36)
where: ¢ = aconstant,
G = grain density.
Substituting (4-35) and (4-36) in (4-34) and rearranging yields:
1
_ SinQ a, (o6-p)2c 1 2 o
VC‘FGD.- - l:cos (a—0). ;f p b (Cp+ CL)] &b, (4-37)

where: V. = critical flow velocity at height z = aD; above bed necessary for
entraining grain of diameter D;.

Next, this flow velocity near the bed must be related to a more practical mea-
sure of flow strength, such as the vertical mean flow velocity, or more desirably,
the spatial and temporal average bed-shear stress, T,. This is accomplished by
using the Prandtl equation, which describes the velocity structure of a turbulent
flow in the proximity of a wall. Prandtl, a legendary German filuid dynamicist of
the 1920s, concluded that the temporal mean velocity in the lower 20 percent of a
flow above the thin viscous sublayer is given by:

T
V=4 ﬁ In(p) (+-38)

T
where: |- = shear velocity = U, for convenience,

P

A = 2.5 for clear water,

z = distance measured away from wall,
k = roughness length for wall.
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Shields diagram as presented by Miller et al. (1977), in which critical dimensionless
bed shear stress, ©,, is plotted versus boundary Reynolds number, Rep.

Substituting (4-38) into (4-37) for V. and rearranging yields:

T, _f, .1 1 2 i singt
(c-p)gD, 1 fCp+C; aD;, 72 b 7 [ cos(a-8) (4-39)
4 |

The left side has of (4-39) has been grouped in this form because it is 2 dimen-
sionless ratio of the tangential force-per-unit-area exerted on the bed by the turbu-
lent flow to the weight-per-unit-area of a grain layer 1 grain-diameter thick. It
makes sense that above some threshold of bed-shear stress scaled to the weight of
the grains, motion will commence. This ratio is often called the Shields parameter
after A. Shields, the German hydraulic engineer whose work is important here.
Shields parameter is usually given the label ©c. In a simple world, one might
expect Shields parameter to be constant, but it is not. The terms within the braces
on the right-hand side are complex functions of the structure of flow turbulence
near the wall. The remaining terms involve ¢ and the ratio of D; to the length of

the roughness elements. Let us first look at the dependence of critical shear stress
on the structure of flow turbulence, by assuming that the bed consists of grains of
only one size.

Bed of Homogeneous Size

In 1936, Shields published a landmark paper entitled Anwendung der Ahnlich-
keitsmechanik und der Turbulenzforschung auf die Geschiebebewegung, which
roughly translated means Application of the Similarity Principle and Turbulence
Research to Particle Movement. In it, Shields established for the first time the
functional form of (4-39) for the simplified case of homogeneous sizes. His
results, along with more recent data, are plotted in Figure 4-6. To represent the
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structure of the turbulent flow, he chose a dimensionless parameter called the
boundary Reynolds number Rep, defined as:

R U.D

= 4-4
ep v (4-40)
where: v = fluid kinematic viscosity,

D = prain diameter of the unisize bed.

Note that O, decreases and then slightly increases with increasing Rep, becoming
constant at 0.045 for Rep > 60, that is, when the bed is hydraulically rough.
Unfortunately, T, occurs in both @, and Rep, making it difficult to determine the
dimensional critical shear stress of a particular size-density grain. This problem is
overcome by approximating the curve in Figure 4-6 by three regression equations
in the manner of Bridge (1981):

®, = (0.1Rep)™  for Rep<1 (4-41)

In®_ = —2.26-0.905In(Rep) + 0.168 1n? (Rep,) for 1 < Rep <60 (4-42)

@, = 0045  for Rep> 60 (4-43)

The above entrainment equations for a homogeneous bed have been encoded in
the FORTRAN subroutines listed in Program 3.

Heterogeneous Size-Density Bed

How do we treat the case where the bed consists of a range of grain sizes? From
Figure 4-5 we see that the terms in (4-39) dealing with relative grain sizes must be
functions of D; and grains of diameter D5, because if the bed-size distribution is
unimodal, D; most probably will be resting on Dsg, the median size of the distri-
bution and the size that determines the bed roughness. We expect that if D; is
small with respect to Dsq, then from (4-39), the critical Shields parameter ©. for
the D, size fraction of a mixture will be greater than ©, for the case of a homoge-
neously sized bed.

To account for this dependence, we adopt an empirical formulation for rela-
tive size terms provided by Komar (1987a; 1987b). Komar represents the relative
grain size terms in (4-39) by a power function of the ratio Dy/Dsq such that:

—m

D,
6, =06 _4 (4-44)
’ 0\ Dsp
where: G)C’ = critical Shields parameter for median size,
]
D;; = grain size of jth size fraction of the jth density species,
Dsy = median bed grain size,
m = aconstant.
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Notice that the terms within the braces in (4-39) are represented by the critical
Shields parameter for the median size, and the other terms are represented by the
power function. As mentioned earlier, the Shields parameter is a dimensionless
ratio of the bed shear stress to the immersed weight of a single layer of grains
over a unit area. Here we define G)ij as:

T
[

@ = — 4 (445
% (0;—p)gDy )

in which Tg, is the critical bed shear stress necessary to entrain a grain of the ith
size fracuon of the jth mineral species. The magnitude of G) is obtained from
(4-41) to (4-43).

A matter of recent dispute has been the appropriate value of m in (4-44)
(Parker, Klingeman, and McLean, 1982). For gravel of a unimodal distribution in
which the range of sizes falls between 0.3 < D, i#/Dsp < 22, a good choice for m is
0.6 (Figure 4-7). For sand sizes, van Niekerk et al. (1992) found that if m is 0. 63,
acceptable results are obtained. Equation (4-44) and supporting relationships have
been encoded in the FORTRAN subroutine ENTRAINH in Program 6.

7] + Fahnestock (1963) B
Milhous {1973)
Carling {1983) . Lt
x Hammond et al. {1984) *
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Log-log plot comparing measured and predicted critical bed shear stresses, T, for
entrainment of gravel from bed of mixed particle sizes (from Komar, 1987b).
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Suspension Criterion

Having calculated which grains will be in motion, we must determine whether
they will travel as bedload or suspended load. The criterion in general use
assumes that grains will be suspended when the temporal mean turbulent lift force
on the bedload per unit bed area Fr, slightly exceeds the grains’ immersed weight
per unit bed area, W', or:

21 (4-46)
By the general drag force equation:

v, =v)? (4-47)

Fyp = CA;p 5

where:  C; = alift coefficient,
A; = the area of grains exposed to lift per unit bed area,
p = fluid density,

v = root mean squares of upward and downward turbulent fluctua-
tions.

Experimental and theoretical studies (discussed in Bridge and Bennett, 1992)
have concluded that this difference in magnitude of turbulent fluctuations near the
bed is proportional to the temporal mean bed shear stress, T,, or more precisely, to
its surrogate, shear velocity, Us:

oy o—ple

where: B = proportionality constant.

Therefore,

B2
2

Frg = CAp (a-49)

Now consider a definition of the grains’ immersed weight, W’. We could
define the immersed weight of grains in terms of their density and volume, and
enter it directly into (4-46), but there is a more elegant method. When grains settle
at their constant terminal fall velocity w, the fluid drag acting on them must just
equal their immersed weight:

2

w {d
CpsArp—5 =W (4-50)
where: Cpg = coefficient of drag of grain settling in still water,
A; = cross-sectional area of grain,
W = grain’s submerged weight.
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It is the left-hand side of (4-50) which we substitute into (4-46), along with
(4-49). Assuming that C; equals Cpg yields:

w<BU. (a-51)

This elegant inequality states that the fall velocity of a gain must be less than a
fixed proportion of the fluid shear velocity for a grain to be suspended. We will
find it more convenient to express the criterion as the condition for a grain to
remain in the bedload. With the possibility of i different sizes and j different den-
sities, the suspension criterion then becomes:

2
PwW
T, < {4-52)
i 32
where: T = minimum shear stress necessary to cause suspension of ith size

if

and jth density fraction of bed.
Theory and experiment show that B ranges from 1.25 to 0.64 and is set at 0.8 here.

Calculation of Fall Velocities

It is clear above that we must also know the constant terminal settling or fall
velocities of sedimentary grains in a turbulent fluid. Accepting the common
assumption that fall velocities in wall-bounded turbulent flows equal those in still
water allows us to use an empirical equation due to Dietrich (1982). Based on the
data (gray band} in Figure 4-8, he combined the fall velocities of grains with
many different sizes, densities, and shapes into one nonlinear regression equation:

logW, =—3.76715 + 1.92944 (log D)

2 3 4 (4-53)
—0.09815 (logD.)“ —0.00575 (logD.)” + 0.00056 (logD.)
3
pwy;
W, =——-" _ (4-53)
(0'}. - p) gv
(0;-p) gDiij
=4 ~— = (4-55)

- = pv2
where: W. = dimensionless settling velocity,
Dy = dimensionless grain diameter,
p = fluid density,
wy = fall velocity of ith size and jth density particle,
G; = mineral density of jth fraction,
g = gravitational acceleration,
v = kinematic viscosity,
D,; = nominal diameter of ith grain size fraction and jth mineral
" density fraction obtained from sieve measurements.
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Figure 4-8

Log-log plot of dimensionless constant terminal settling velocity in still water versus
dimensionless grain size as compiled by Dietrich (1982). Dimensionless settling

3
wh
velocity Wi is defined as p——iﬁ- , and dimenstonless grain size D,, is
(c-p)gv
3
(6-p)gDyy
defined as pv2 . where if and nij are subscripts as in the definitions

for (4-55). Gray area marks cloud of data points. Grains with lower Cory shape factors
plot lower in the cloud.

Program 7 contains a FORTRAN subroutine which calculates fall velocities from
the Dietrich equation.

Sediment Load Formulation

There are scores of formulas that attempt to predict the flux of sediment by a uni-
directional open channel flow, and none is entirely satisfactory. To understand
why, the reader should refer to discussions in compendia such as those of Mutlu
Sumer and Muller (1983) and Raudkivi (1990). For our purposes, a formula will
be sufficient if it is theoretically based, conceptually simple, and accurate over a
useful range of grain sizes and flow strengths. In addition, it must predict the
transport rate of each grain size separately. The Bagnold equation, as modified by
Bridge and Dominic (1984), is a good place to start,
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Bedload Formula

The modified Bagnold bedload transport formula (Bridge and Dominic, 1984) is:

, B
Ibi,ur = Wum (U*_U*CU) (TO_TCU) (4'56)

where: § b = bedload transport rate (weight transported per unit width per unit

time) of ith size and jth density fraction during application of kth
instantaneous bed shear stress,
Wj; = volumetric proportion of ith-jth fraction in active bed,

1 z
B = =in(=),
K kf

k = von Karman'’s constant,
z = distance above bed to center of fluid thrust on bedload grains,
kf = bed roughness,
tan ¢ = dynamic friction coefficient,
U+« = effective instantaneous fluid shear velocity,
1, = effective instantaneous bed shear stress.

The subscript ¢ stands for critical value at moment of entrainment. Experiments
show that B/tan o is roughly a dimensionless constant equal to 10, and this value
will be used here.

Now, notice that it is the effective fluid shear velocity and shear stress that are
called for. By “effective” we mean that portion of the fluid shear stress exerted on
the bed and banks that is available to transport sediment. Fluid shear stress aris-
ing from flow separation over dunes is not effective in transporting sediment, and
therefore should not be included in (4-56). Hans Albert Einstein (“the son™) pro-
posed a method for defining effective shear stress by thinking of the total hydrau-
lic radius at a site as the sum of two components, one creating skin friction, R”,
which is the effective part, and the other creating form friction, R (Einstein,
1950). The former can be substituted in (4-20) to define an effective shear stress,

T,. By definition the effective temporal mean shear velocity, Us, is:

S (4-57)

Einstein used the empirical observation that the average fiuid velocity at a

stream cross section, V, is given by:

12.27

v
%
where: U. = effective temporal mean shear velocity,
k = grain roughness, assumed to be 2.5 times representative size of

bed particles.

Thus, given the average velocity and friction slope from a flow model as that in
Program 4, and given a bed-grain size, (4-57) and (4-58) can be solved iteratively
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forr” and thus ¥, and t) . Henceforth, references to shear stress and velocity
assume that these skin-friction components apply unless otherwise noted, and the
* superscript will be dropped. A FORTRAN subroutine which calculates effective
shear velocities is give Program 8.

Next, note that it is the instantaneous shear velocities and stresses that are
used in (4-36). It has long been established that flow turbulence results in fluctoa-
tion of local instantaneous bed shear stresses about a mean value due to the con-
tinuous disruption of the local boundary layer by turbulent bursts and sweeps.
Because the modes and rates of sediment transport vary as a function of these tur-
bulent events, it is desirable to incorporate a distribution of instantaneous bed
shear stresses in our bedload transport model. Observations suggest that instanta-
neous bed shear stresses approximate a Gaussian distribution (Figure 4-9) for
fully turbulent flow, with a coefficient of variation of 0.4:

1M —%
1 _'§|: Ciyg )]

e (4-59)
T

1

f(z,) =

where: T, = instantaneous mean bed shear stress,
7, = temporal mean bed shear siress,
o, = standard deviation of instantaneous bed shear stress distribution.

To incorporate turbulent fluctuations into the bedload model, let us calculate
the bedload transport rate of each size-density fraction for each of N bed-shear
stress ranges. Each range will have a mean value of 1, and a width AT, equal to

6071, /N (Figure 4-9). The proportion of time allotted to each shear stress range Py
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is obtained by integrating the distribution function over the interval Ar,

Program 9 lists a FORTRAN subroutine that calculates frequency distributions of
instantaneous bed-shear stresses.

Incorporating all of these ideas leads to the final form of the bedload transport
equation:

ibut = kWP, (U, - U"ca) (T, - Tcg) {4-60)

where: b,

U

bedload transport rate (weight transported per unit width per

unit time) of ith size and jth density grain due to kth instanta-
neous shear stress interval,
K = 10,
W; = volumetric proportion of ith-jth fraction in active layer,
P, = proportion of time kth shear stress is active,

¢ = subscript for critical values at moment of entrainment.

To obtain the total transport rate of the ith-jth fraction, (4-60) is summed over all
instantaneous bed shear stresses for which the fraction is in motion as bedload:

f
iy, = Y b (a-61)
k=e
where: e = interval of smallest instantaneous shear stress greater than T,

7

L
1l

interval of largest instantaneous shear stress less than or equal to
T .

ij
Program 10 lists a FORTRAN subroutine incorporating these ideas. It calls a sub-

routine named DRANGEH to calculate ¢ and f, the bounds of summation in
(4-61).

Suspended Load Transport

Having calculated the bedload, we can now calculate the suspended load. The sus-
pended load is the width- and depth-integrated distribution of suspended solids
carried forward by a turbulent fiow. It is defined as:

x i

D
s, = ij C,dz (4-62)

where: §; = suspended load transport rate (kg s'l),
= width of flow (m),
= x-directed fluid velocity at height z (m s1),

= concentration of suspended solids at height z (kg m™),
= depth of flow (m), as defined in Figure 4-10.

YA S e
|

As in other formulations, we assume that the boundary between the bedload
and suspended load occurs at the top of a moving bed layer, at distance z = a from
the reference plane. We then define a velocity profile, V,(z), and a concentration
profile, C,-j(z), over the vertical. The vertical velocity profile of turbulent, uniform,
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wall-bounded fiows is well described by the von Karman-Prandtl mixing-length
model of turbulence. This model produces a logarithmic profile, which written in
terms of the mean flow velocity over the vertical, is:

U, _
V.(2) = ?[ln(%) + 1] +V @-63)

where: U, = effective ternporal mean shear velocity,

K = von Karman constant (0.4 for clear water),
z = height above bed,
D = water depth,

V = temporal and vertical mean velocity.

The FORTRAN subroutine in Program 11 computes values of V, as functions of
the independent variables.

Suspended sediment concentrations for individual size-density fractions usu-
ally are calculated from the convection diffusion equation for the vertical distri-
bution of suspended sediment. The convection diffusion equation is derived from

Flow velocity {m/s)

z=D

Helght Above Bed, z (m)

0 0.0001 0.0002 0.0003

Sediment Fractlonal Volume Concentration

Figure 4-10

Plots of (A) height above stream bed versus concentration of suspended
sediment (solid circles) and (B) height versus flow velocity {(open circles) in
Mississippi River at St. Louis observed by Colby {1963).
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a mass balance for suspended sediment by assuming that steady state conditions
apply over a time step, that the dependent variables are constant in the cross-
stream, y direction, and that the x-directed diffusivity is negligible. The equation
is:

9 9 =9 pel
52 (BV:Cp) + 5B (wy+ V) C] = az[bazaz(cff)] (4-64)

where:  Cj; = local suspended sediment concentration (total mass of solids of
ith-jth fraction per unit volume of fluid),
b = width of flow,
V,and V, = local longitudinal, x, and vertical, z, fluid velocities,
g, = vertical sediment diffusivity.

In gradually varied flows, the local vertical velocity V, is considered to be insig-
nificant when compared with the particle settling velocity for sand and gravel.

A numerical solution of (4-64) is formidable, and usually thankfully unneces-
sary. For reaches approximated by long-distance steps, the horizontal gradient

term, E?_x(bv"cf-") becomes negligible, in which case integration of (4-64) yields

the Rouse equation (Rouse, 1937):

Cz,, D-—z a (‘::’i ]

= (== 4-6
C, ( z D-a (4-65)
¥
where: Cz'_j = concentration of ith-jth fraction at flow height z,
Ca,_j = concentration of ith-jth fraction at flow height a,
a = height of moving-bed layer.

The reference concentration at the height of the moving-bed layer, Ca,, 1s calcu-
lated by assuming that grains in suspension have a concentration in the moving-
bed layer predicted by the bedload equation. That concentration is defined as:

H
by

Ca,-, - Ubua z (4-66)
where:  C,. = concentration of ith-jth size-density fraction in moving-bed
layer,
Ub,-,- = near-bed velocity of ith-jth size-density fraction,
a = thickness of moving bed layer,
g = gravitational acceleration.

An expression for Ub,-j is:
Upy =40 -0, (4-67)

where suitable values of A range from 6.8 to 8.5. The moving-bed layer thickness
a can be calculated using a relationship due to Einstein (1950):

a = 2Dy, (4-68)
where: a = grain saltation height,
D5y = mean grain diameter.
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Equations (4-62) through (4-68) are incorporated in FORTRAN subroutine
SUSP (Program 12) to calculate the suspended load of a steady, gradually varied
unidirectional flow. The solution of the bed conservation equation is also included
in Program 12. The reason for grouping these two solutions in the same subrou-
tine is described in the next section.

Treatment of the Bed

As mentioned previously, once sediment transport begins, the bed texture and
composition are modified. These modifications affect fluid flow and transport
rates, thereby further modifying the bed. For this reason, the bed must be treated
as a dynamic component of the system. This is accomplished by defining an active
layer that consists of n we]l—nﬁxef&?ﬁsity fractions, each with its own size distri-
bution. Each size class is represented by a median diamefer Dy;. Particle exchange
occurs between the active- and moving-bed layers during each timestep, after
which the particle size-density distribution in the active layer is updated to allow
for erosion or deposition of different size-density fractions. If net erosion occurs
during the timestep, the active layer is replenished from the underlying parent bed
material by an amount equal to the thickness of sediment eroded. If net deposition
occurs, the base of the active layer moves up by an amount equal to the thickness
of deposited material. The active layer thickness is defined as:

TD
Ta = 2D50r (4-69)
Cs0

where: T, = active layer thickness,

c;r'l
1l

effective temporal mean bed shear stress,

G
]

critical shear stress necessary to entrain mean grain diameter.

Note that the active layer thickness increases with increasing excess shear stress.
Its minimum thickness is the thickness of an armor layer of roughly two grain
diameters.

Computation of the sediment mass exchange between the flow and the active
layer, and consequent computation of erosion and deposition at each downstream
site, is accomplished using the conservation of mass equation written for each
size-density fraction. It is assumed that the timestep is sufficiently smail so that
fluid flow and sediment-transport rates may be considered constant over the
timestep. The sediment continuity equation for a size-density interval expressed
in terms of width-integrated sediment discharge is:

T
o,(1-p) & (bz,) a2 (s) = 0 (-70)

where: p = bed porosity

b = width of active bed, assumed to be equal to flow width,
zp; = bed elevation attributable to ith-jth bed fraction,
i, = bedload (kg 57) transport rate of ith-jth fraction as defined in
if
(4-61),
SSU = suspended load transport rate of ith-jth fraction as defined in
(4-62) (kg s ™.
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Equation (4-70) is solved using a modified Preissman scheme (Lyn and Goodwin,
1987):

A (bzbu) :=

1 . . {4-71)
————Gj(l s {[® AU, +S) .01 [(1-®) (AG,, +S,) )1
in which A(variable)gubscript = (variable)gubscript — (variable)gpscript-1, 2nd @ is 2
weighting factor between 0 and 1, and here set to 0.55.

These ideas are incorporated in the latter part of subroutine SUSP in
Program 12 instead of a separate subroutine, because often more mass of a partic-
ular size can be transported by the flow than is present in the active layer. The
transport rate for that size fraction must then be reduced. The process is iterative,
and numerous calls among subroutines are slow in FORTRAN. Therefore we
combine the two subroutines in SUSP to improve computation speed.

1-D ROUTING OF HETEROGENEOUS SIZE-DENSITY
SEDIMENT OVER A MOVABLE BED: AN EXAMPLE

It is easy to lose sight of our goals, so a pause is in order. Qur objective is to discuss the
delivery of sediment from a source terrain to a basin. 50 far, we have derived a generic
flow model that calculates local flow properties, such as cross-sectional mean velocity
and water depth. We also have derived subroutines that predict the transportation and
deposition of various size-density fractions in a unidirectional flow. Interaction of the

transported material and the bed also is considered. We now need to assemble these

components into an interacting whole. Such a model will have many applications, from
predicting armoring below dams to sedimentary characteristics of fluvial strata in
basins.

Here we discuss a 1-D numerical model of sediment routing within a relatively
straight, nonbifurcating alluvial channel. The mode! simulates unsteady, nonuniform
open-channel flow over an erodible, heterogeneous bed. The model calculates transport
rates of each size-density fraction as a function of longitudinal position and time. As
particles are eroded from or deposited on the bed, the channel hydraulic geometry may
evolve or the bed may coarsen, thereby altering the flow hydraulics and fractional trans-
port rates. The model is intended to simulate river evolution over geomorphic time
intervals and therefore uses an uncoupled steady solution during each time step. In
applying the model the reach of interest is subdivided into a number of longitudinal ele-
ments of varying width-averaged properties. During each time step, flow depths and
velocities in each element are determined from the gradually varied flow equation using
the standard step method (Program 4). The bedload and suspended-load transport rates
of each size-density fraction are calculated with subroutines of Program 10 through Pro-
gram 12. Interaction of the transported load and the bed is calculated by a bed continuity
equation solved for each size density-fraction in an active layer (Program 12).

Solution of (4-1) through (4-71) proceeds according to the flow diagram of Fig-
ure 4-11. The reach of interest is discretized into a finite number of nodes, each Ax
apart, at which hydraulic geometries and bed size-density distributions are known
(Figure 4-12). At the start of each new timestep, the flow equations of the previous
section (4-24) and (4-25) are solved using the standard step method of Henderson
(1966), subject to a water-surface elevation at the downstream boundary node. Next,
the skin-friction component of bed-shear stress (4-57) and (4-58) and 2 distribution
of instantaneous bed shear stresses (4-59) are calculated at each node. After that, the
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Figure 4-11  Flow chart of 1-D sediment-routing model.

critical shear stresses for suspension of each size-density fraction in the active
layer at each node are calculated from (4-52), and the critical shear stresses for
entrainment are determined using (4-41) through (4-44). Bedload transport rates
of each fraction at each node are calculated with (4-61), which provides the refer-
ence concentrations necessary to calculate the suspended loads with (4-62).

The suspension profile is calculated from (4-65). Next, the bed continuity
equation (4-70) is solved for each size-density fraction at each node, nd. If the
theoretical transport rate of a certain size-density fraction exceeds the amount

1-DIMENSIONAL ROUTING OF SEDIMENT OVER A MOVABLE BED
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Figure 4-12

Schematic representation of grid used to calculate suspended lead and treatment of
bed after erosion and deposition. Effects of net erosion and aggradation on active
layer are represented.

available in the active layer, the calculated bedload and suspended load transport
rates of that size-density fraction are reduced until the amount eroded just equals
the amount available. Finally, at each node, the size-density composition of the
active layer and the bed elevation are recomputed, after which the computation
proceeds to the next timestep.

Program 13 contains the main FORTRAN program which links the previously
described subroutines together. It contains calls to numerous auxiliary subrou-
tines, such as READRSTRT, which reads data if we want to restart calculations to
extend a previous model run. It also contains WRFLDTA that writes output to cer-
tain files. These subroutines also are contained on the Programs diskette.

The two examples that follow demonstrate the use of the sediment-routing
model and test its accuracy against flume and stream observations. A third exam-
ple explores conditions under which a gold placer might form in an aggrading
alluvial fan. Certain input parameters in the model are similar for all three exam-
ple applications. First, the thickness of the moving bed layer is determined using
the Einstein (1950) equation (4-68), and second, the active layer thickness is
determined at the start of each numerical experiment with (4-69).

The active layer thickness is not allowed to vary dynamically during these experi-
ments because at high flow strengths varying thicknesses make the model numeri-
cally unstable. However, at lower flow sirengths, as in most of the experimental
runs presented here, dynamically varying thicknesses of the active layer present
no problems and lead to improved results. In the following discussion it should be
kept in mind that all input parameters have either fixed values or values that vary
only over a narrow range. In every case the actual flow and grain size values are
used as input. No parameter has been adjusted to obtain a better fit.
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Elevatlon (km)

Plates 6-1 and 6-2

Elevation (km)

0 50 i00
Horizontal Distance (km}

Plate 6-1 Experiment 8-1 representing failed-rift basin after five million years of elapsed time.
Stippled pattern denotes sands, and shales are not stippled. Vertical section through
basin shows main rift phase in which overpressures are shown with color contours in
megapascals (MPa). Overpressures are defined as difference between hydrostatic
pressure and actual fluid pressure. Variations in overpressures reflect rapid
subsidence and accumulation of thick shales. Overpressures increase rapidly with
depth because pore water cannot escape fast enough due to low permeabilities of
shales. Arrows show directions of pore-water motions, which locally are downward in
sands at base of sequence and upward in overlying shales. Velocities range too
widely to be shown by differences in fengths of arrows. Compositions of beds
provided as input to program in experiment are listed in Table 6-5. Sands at base of
sequence were deposited in initial rift phase, whereas thick shales in central part of
sequence were deposited in main rift phase. Vertical scale is 20 times horizontal
scale.

T T T T T T T T

T
50 100
Horizontal Distance (km)

Plate 6-2 Experiment 6-1 representing failed-rift basin after 31 million years elapsed time, in
sagging phase of rift. Color contours show overpressures. Overpressures are low
throughout most of the basin, except in the lower central part of the basin, where they
represent residual pressures from main rift phase. Siippled pattern denotes sands,
and shales are not stippled. Mixed shales and sands in upper part of sequence were
deposited during sagging phase of failed rift. Vertical exaggeration is 20 times.
Arrows show direction of flow.
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Plates 6-3 and 6-4
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Plate 6-3

Experiment 6-2 representing prograding delta. Vertical section through basin is
perpendicular to shoreline. Stippled pattern denotes sands, and shales are not
stippled. Overpressures are shown with color contours in megapascals.
Overpressures are defined as difference between hydrostatic pressure and actual fluid
pressure. Overpressures increase rapidly within prodelta shales. Locations of
maximum overpressures are related to progradation distance from river mouth and to
variations in thickness of shales. Note topography induced flow in onshore area to left.
Arrows show directions of pore-water motions. Velocities range too widely to be
shown by differences in lengths of arrows. Flow directions are locally downward in
recharge area, but are upward eleswhere. Shoreface sands prograde over former
prodeita shales. Vertical scale is 20 times horizontal scale.
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Plate 6-4

Experiment 6-2 representing prograding delta. Stippled pattern denotes sands, and
shales are not stippled. Vertical section is similar to Plate 6-3, except that shales in
single column shown by black bar to right of center of section, have been replaced by
sand (which has high perrmeability), providing surrogate represention of vertical fault
with high permeability. Color contours show that overpressures are strongly
influenced by presence of fault, indicating rapid dewatering in its vicinity (compare with
Plate 6-3).
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Table 4-2 General hydraulic conditions for experiments used to test sediment-routing model

Water

Discharge Energy Manning’sn  Water
Data Source {m%s) Slope {m?%) Depth (m)
Little and Mayer (1972)
Flume Experiment Run 3-4 0.016 0.0019 0.0153 0.066
Gold placer smdy
(Vogel et al., 1992) 100 0.00001 0.04 475

Experiment 4-2: Flume Study of Little and Mayer

Little and Mayer (1972) investigated the effects of sediment gradation on channel
armoring. A nonuniform bed of sand and gravel was placed in a flume 12.2 meters
long, 0.6 meters wide, and (0.1 meters high. Clear water was passed over the bed
to produce bed degradation and armoring. The eroded sediment was caught by
screen separators at the downstream end of the flume, and at regular intervals was
dried, weighed, and stored for later sieving. When the total transport rate was 1
percent of the initial transport rate and the armoring was thought complete, the
flume was drained and the armor layer was sampled using melten beeswax as
described by the authors. Here, we compare our sediment-routing model with Lit-
tle and Mayer’s experimental number run 3-4, for which the hydraulic conditions
are listed in Table 4-2. The grain size distribution of the bed material (Table 4-3)
from Litile and Mayer’s Table 3, is normalized so that the cumulative weight per-
centage equals 100 percent.

For numerical simulation modeling purposes the flume was divided into eight
sections each of 1.525 meters length. The time step was 1 minute. In a series of
sensitivity experiments, the time step was varied between 1 second and 10 hours.
Model results were insensitive to time step if the time step was less than 5 min-
utes, and at time steps of up tol hour model reproductions were still reasonably
accurate. The active layer thickness, calculated from (4-69), was set to 0.002

Table 4-3 Grain size frequency distributions used in Experiment 4-2 and Experiment 4-4.

Little and Mayer Gold placer study of Vogel et al.:
Flume Experiment Quarkz Gold placer study of Vogel et al.: Gold
Grain slze Interval Percentage Grain size interval Percentage Grain slze interval Percentage
{mm) by weight (mm) by Weight {mm) by Welght
0.125-0.177 1.87 0.125-0.250 04 0.008-0.011 0.005
0.177-0.250 3.23 0.250-0.500 1.5 0.011-0.016 0.017
0.250-0.354 6.85 0.500-1 4.0 0.016-0.022 0.044
0.354-0.500 9.65 1-2 8.3 0.022-0.031 0.092
0.500-0.707 13.24 2-4 135 0.031-0.044 0.150
0.707-1.000 15.45 4-8 172 0.044-0.062 0.191
1.000-1.414 14.78 8-16 17.2 0.062-0.088 0.191
1.414-2.000 11.91 16-32 13.5 0.088-0.125 0.150
2.000-2.828 11.57 32-64 83 0.125-0.177 0.092
2.828-4.000 6.15 64-128 4.0 0.177-0.250 0.044
4.000-5.657 334 128-256 1.5 0.250-0.354 0.017
5.657-8.000 1.95 256-512 04 0.354-0.500 0.005
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meters. The bed shear stress was not partitioned into form and skin components
because bed forms were not present.

The computed and the measured total transport rates (Figure 4-13) show good
agreement, in that the computed values are within a factor of 2 of the measured
values at all times. Local fluctuations, the origins of which are unknown, cause
L only temporary divergence of the two curves. It may be, as Little and Mayer

! (1972) claim, that the turbulence spectrum produces random and intermittent
movement of the bed particles. After 75.5 hours of flow, the size distributions of
the original sediment, the bed-armor sediment, and the total eroded sediment
(Figure 4-14) show that the numerically simulated armor layer is slightly finer
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than observed, although the difference in mean grain sizes is only 0.3 mm (2.7
mm versus 3 mm). The numerically simulated and physically observed grain-size
distributions of the eroded sediment almost coincide.

Experiment 4-3: Field Study of the East Fork River, Wyoming

Sediment-transport and hydraulic data were collected by the U.S. Geological
Survey (Leopold and Emmett 1976, Mahoney et al., 1976) from a bedload trap
and flow gauges operated between 1973 and 1979, on the East Fork River, Wyo-
ming {Figure 4-15). A 5-km reach upstream from the bedload trap provides an
ideal test of a model’s ability for numerical simulation of sediment transport
under large-scale, nonuniform, unsteady flow conditions. For simulation pur-
poses, the reach was divided into thirteen equally spaced segments between sta-
tions B-5 to B-17 (Figure 4-15). Segment end points define fourteen nodes, with
node number 1 coincident with station B-17. At each node, a bed grain-size dis-
tribution was synthesized from twenty size fractions ranging between 0.0625 and
45.3 mm diameter, based on an interval average of the measured bed grain-size
distributions. The simulated period extends from May 28, 1975, the day Leopold
and Emmett measured the bed grain size distribution, to June 19, 1975, an arbi-
tary termination date.

Two floods occurred in this period (Figure 4-16). The water discharge and
flow depth at the downstream node (B-17), obtained from Leopold and Emmett’s
Table 1(1976), were assumed constant for a 24-hour period corresponding to the
measurement day. Rectangular cross sections were assumed and widths at all
nodes were kept constant in time. The bed shear stress was reduced to simulate
the effect of bedforms on the effective bed shear stress. Sediment influx at
upstream node B-5 was set to a value in equilibrium with the flow and the bed.
Sediment influx from Muddy Creek (Figure 4-15), a tributary, was ignored
because it consisted primarily of fines. The time step was 10 minutes and the
active layer thickness, calculated from (4-69), was set to 0.005 meters.

N

Figure 4-15  Sketch map of the study reach on East Fork River, Wyoming (after Mahoney et al.,
1976). Data used in Experiment 4-3 were collected at station B-17. Station B-5 is
start of modeled reach.
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Figure 4-16

Plot of computed and measured bedload
transport rates versus time, and measured
effective water discharge (as defined by
Leopold and Emmett, 1976) versus time at
USGS facility, East Fork River, Wyoming, from
May 28 to June 19, 1975.
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The simulated bedload transport rates (dry weight of sediment transported
through section B-17 per second per meter width) compare favorably with the
rates measured by Leopold and Emmett (1976) as shown in Figure 4-16. The
channel width used as a denominator for the measured values is 14.8 meters,
which is the width of the bedload trap. The simulated bedload transport peaks
match those of Leopold and Emmett in magnitude and date for both flood events.
More importantly, the model accurately reproduces the grain-size distribution of
the transported bedload (Figure 4-17). On June 2, 1975, before the first flood, the
median size of particles in the bed was about 0.6 mm (Figure 4-17). By June 7,

Figure 4-17

Cumulative frequency distribution of particle
size for both observed and computed bedloads
during two floods in East Fork River. Observed
data from Leopold and Emmett {1976}
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1975, at the height of the flood, both the measured and modeled grain-size distri-
butions were coarser, such that the median was about 1.2 mm (Figure 4-17))

Curiously, the second flood, occurring between June 11 and June 19, 1975,
produced lower bedload-transport rates than the first flood, although its peak
water discharge was 19 percent higher (Figure 4-16). The reason is obvious when
the modeled mean grain size of the bed material immediately upstream from the
trap is compared for both flow events. At the start of the simulation run (May 28,
1975), nodes B-10 and B-11 had measured mean grain sizes of 0.9 and 0.5 mm,
respectively, values which were finer than the average of the reach. By June 3,
Just before the first flood, this area of fine sediment had migrated downstream to
segments B-13 and B-14, just upstream from the bedload trap at B-17. At the peak
of the flood event (June 7), the readily entrainable fine sediment was transported
to the bedload trap. By June 11, after the first flood, most segments were depleted
in fine sediment, so that during the second flood, transport rates were lower. The
first flood had partially armored the bed. Figure 4-17 compares the measured bed-
load grain-size distributions during the peak of the two flood events and confirms
this interpretation, because during the second flood, the bedload grain size distri-
bution was measurably coarser.

Experiment 4-4: Gold Placer Study

The sediment-routing model was developed to treat multiple grain densities, and
is therefore useful for simulating heavy mineral placers. Probably the most
famous heavy mineral placers in the world are the Witwatersrand paleoplacers of
South Africa, the richest gold deposits in the world (Pretorius, 1976). In this
example, we simulate the paleohydraulic conditions thought to have formed the
2.8-billion-year-old Ventersdorp Contact Reef, a paleoplacer of the Witwatersrand
basin. It is thought to have accumulated as an aggrading alluvial fan.

The simulation consists of a 5-km long river with constant width of 100
meters and constant discharge of 100 m>/s flowing over a flat surface with a slope
of one in ten thousand into a standing body of water that was initially 4.75 meters
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Figure 4-18

Longitudinal section through simulated gold-bearing alluvial fan in which time lines
representing former bed surfaces are shown every 2500 hours of simulation time.
Figure 4-19 plots gold concentrations versus distance downstream at 15000
hours.
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deep. Sediment consisting of quartz and gold grains with constant phi-normal dis-
tributions entered at the river head. Grain size distributions supplied are summa-
rized in Table 4-3. The sediment feed rates of the grain sizes, expressed in kg/m/s,
are equal to the weight proportion of grains at the start of the experiment. For
example, if a grain size makes up 1 percent of the bed, its feed rate is 0.01 kg/m/s.
While the simulated slope and total weight percentage of gold are probably too
high, we chose them to produce obvious temporal and longitudinal gold grade
variations in the results.

Results show that the initial stream power of the river could not transport the
mixture at the feed rate, causing sediment to accumulate at upstream nodes (Fig-
ure 4-18). Gradually, as more material was deposited, the bed slope increased and
a concave profile alluviated and expanded. The gold was preferentially deposited
at certain downstream locations, where conditions were favorable for placer gene-
sis (Figure 4-19).

Ideal placer locations are a function of many factors, the main two being
heavy mineral grain size and bed shear stress, the latter in turn a function of bed
slope and downstream distance. In the experiment, after 1.75 years (Figure 4-19),
the first 1200 meters of the stream show, on average, a bed enriched in relatively
coarse gold, with concentrations steadily decreasing with distance; the 1500
meters that follow are depleted in gold. Beyond 2700 meters downstream the river
bed returns to its original concentration because the bed has not yet been altered
due to deposition or erosion. Relatively fine-grained gold, also with an original
weight percentage of 0.158 percent in the bed and feed, was depleted over the first
500 meters. Over the next 2200 meters its average weight percentage steadily
increased, eventually peaking at 2500 meters downstream. The intermediate-size
gold grains, with an original weight percentage of 0.682 in the bed and feed, yield
a bell-shaped concentration curve, with a peak at 1500 meters downstream.

The origin of these distributions may be explained as follows: Relatively
coarse gold is entrained only at high shear stresses, and once it enters the river
system is not transported very far, thus accounting for enrichment at the stream
head. Between 1200 and 2700 meters downstream, the concentration remained
low because the original bed, where relatively coarser gold made up 0.158 per-

Figure 4-19

Plot of proportion of gold, expressed as gold weight
percentage, versus distance downstream after
15000 simulated hours in Experiment 4-4. Gold
weight percent is expressed as moving average
(n=5). Gold grain-size distribution was divided into
three intervals: relatively coarse-grained, between
0.125 and 0.5 mm; intermediately-sized, between
0.031 and 0.125 mm; and relatively fine-grained,
smaller than 0.031 mm. Coarser- and finer-grained
gold represent 0.158 percent of both feed and bed
at start of experiment, while intermediate-sized gold
represents 0.682 percent.

3
) Gold Sizes After 15000 Hours
i All Sizes
0.125<D<0.5mm
- T 0.031<D<0.125
5 2+ D < 0.031 mm
Q
£ i
o.
P i
o
2 |
g —
T
S 1-
0 p—
T T T T T T T T T
] 1 2 3 4

Downstream Distance (km)

a0 CHAP. 4 DELIVERY OF SEDIMENT TO BASINS BY FLUVIAL SYSTEMS




cent, was buried by sediment impoverished in coarse gold. Relatively fine gold,
on the other hand, was readily entrained under the stream shear stresses, and
occurs over the length of the stream. The fact that bed weight percentage of gold
is greater than that of the feed seems to indicate that gold is more difficult to
transport than quartz. Its preferential deposition at 2500 meters seems to indicate
that fine gold is transported reasonably well by the river system and was deposited
when the gentle slope at 2700 meters was reached. The intermediate-size gold
shows an intermediate behavior. At the head of the stream, the flow could entrain
it and transport it downstream. At about 1500 meters downstream, the bed-shear
stress dropped below a value at which, on average, the medivm-grained gold
could be entrained and transported, resulting in deposition of gold. While still
partially entrainable after 1500 meters, most of the medium-grained gold was not
entrained and transported past that point.

A SIMPLER FORMULATION:
YANG’S BED-LOAD FORMULA

For some applications, it may not be necessary to know the detailed bed and sedi-
ment-load textures. In these cases, we can use a transport model that predicts bed-
material discharge given only the median size of grains in the bed and a few flow
characteristics. Bed-material discharge is defined as the discharge of all particles
derived from and readily exchanged with the bed. Extensive summaries of bed-
material discharge formulas as provided by various authors (Alonso et al., 1981;
ASCE, 1976; Yang and Wan, 1991; Stevens and Yang, 1989) and compare mea-
sured and computed results. Our conclusion is that Yang’s formulas are reason-
ably accurate, simple, and cover the range of grain sizes interesting to geologists.

Yang derived two equations that predict the concentration of the bed-material
discharge, one for sand-bed streams and one for gravel-bed streams. Their deriva-
tions are based on dimensional analysis and the concept of unit stream power, VS,
a measure of the rate of potential energy dissipated per unit weight of water,
where V is velocity and S is stream slope. Coefficients for both equations were
obtained by multiple regression. For the sand-bed equation, 463 sets of laboratory
data on flow and sediment parameters cover a range of median sieve diameters
from 0.015 to 1.71 mm. For the gravel-bed equation, 166 sets of laboratory data
cover a range from 2.46 to 7.01 mm. The two equations are of the same form and
differ only in coefficients A through H:

WDSO U*
logC =A - Blog (T) — Elog (7)

4-72
wD vs V.S “72)
=)

50 Us
+ [F — Glog — Hlog 7] log (

v W
where: C = concentration of bed-material discharge in parts per million by
weight,
A, B, E, F, G, H =regression coefficients for sand or gravel given in Table 4-4,
w = fall velocity of the median size in m/s,
Dsy = median diameter of grains in bed in m,
= kinematic viscosity in mzls,
shear velocity in m/s,
average flow velocity in m/s,
energy slope,
V., = dimensionless critical velecity at incipient motion, expressed as:

v
v
14
S
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Coefficients for Yang's bed-material equations (Yang, 1973).

Bed A B E F G H
Sand 5.435 0.286 0.457 1.799 0.409 0314
Gravel 6.681 0.633 4816 2784 0.305 0.282
V A
oo —— 2 lio066 forl2< (%}:m
w Uy Dsu
log ( )-0.06
v (4-73)
or:
Yer = 205 for 70 < [M) 4-79)
w v

Equations (4-72) through (4-74) have been coded in the FORTRAN subrou-
tine in Program 14. The required fall velocities can be obtained from the subrou-
tine in Program 7, and shear velocities, average flow velocities, and energy slopes
can be obtained from the gradually varied flow model in Program 4.
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