CHAPTER 2

BASIN CREATION AND
SOURCE TERRAINS

Here we explore the tectonic processes that create sedimentary basins and their
source terrains. These tectonic processes are rarely observed directly, but rather
are interpreted from the geologic record after excluding such variables as climate.
Such a post mortem requires that a basin be preserved. Thus, there not only must
be processes that create a basin, but also processes that preserve it as part of the
geologic record. Virtually all basins eventually meet their demise through either
tectonic activity or removal by the processes that created them. The positive side
to this life cycle is that we can observe both the development and removal stages
of a basin and obtain insight into physical processes in the Earth’s crust and upper
mantle. Sedimentary basins thus provide a telescope for looking deep into the
Earth.

ISOSTASY AND ACCOMMODATION SPACE

A sedimentary basin is a region of “accommodation space” at the earth’s surface.
Accommodation space is the volume, or in the vertical plane, the area between the
land surface or sea bed and the local base level. Without accommodation space,
sediment only accumulates temporarily before it is removed by erosion and trans-
ported elsewhere. Accommodation space can be formed by several processes. It
can be formed by folding or faulting that produces a local depression. More com-
monly, accommodation space in long-lived basins results from mass loading on
the Earth’s lithosphere. These basins can be large in areal extent and span a long
period of subsidence and deposition, as well as a long post-depositional existence.
As we shall see, although the mass of sediment deposited in a basin will cause
additional subsidence, deposition of sediment by itself cannot generate its own
basin.
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Figure 2-1

Standard columns to determine isostatic equilibrium as a function of crustal
thickness. Mass in columns must be equal, implying changes in relative heights of
mantle, air, water, and sediment layers.

The role of isostasy in the generation of mountains and basins has long been rec-
ognized. Isostatic balance is used to relate the height of mountains to crustal
thickness, with Pratt’s and Airy’s models as explanations of gravity anomalies and
heights associated with mountain chains. Although isostatic models differ, com-
mon to each is the concept that at a particular depth within the Earth, termed the
depth of compensation, there is an equal pressure resulting from the mass of crust
above this depth. Although the depth of compensation can be viewed variously in
analyzing sedimentary basins, we can generalize that the compensation depth lies
within the asthenospheric mantle. This generalization allows a variety of
supracrustal and intracrustal processes that affect isostatic balance to be included.

By nature, isostasy is a one-dimensional process. Mass in the lithosphere is
described by a series of vertical columns of specified density and depth that do
not interact with each other. Figure 2-1 shows two columns in isostatic equilib-
rium, implying that the pressure at the base of the two columns is equal, or alter-
natively, that the integrated mass in each column in the presence of gravity is
equal. Column 1 of Figure 2-1 shows a simple lithospheric system composed of
crust of density p, and thickness c;, and a mantle of density p,, and thickness m;.
Column 1 can serve as a reference column for isostatic calculations. Column 2 is
more complex, having three layers consisting of crust of density p, and thickness
¢y, mantle of density p,, and thickness m,, and a third layer consisting of air with
density p,;, (zero for our purposes) and thickness a,. This is the Airy model that
assumes constant density among columns for the crust or mantle layers. By con-
trast, in the Pratt model, the density of the crustal layer can vary among the col-
umns.

The isostatic equilibrium of columns 1 and 2 in Figure 2-1 can be described
by equating their weight (mass x gravity):

(p.cytp,m)g = (pcytp,m+p, a8 (1)
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Here the total column thickness (from the surface to the depth of compensation)
must be the same for both columns, or

(2-2)

To investigate these equivalencies, let us compare two regions with different
crustal thicknesses. In Figure 2-1 we want to evaluate the difference in surface
elevation between columns one and two. This difference is expressed by a,, the
thickness of the column of air above the surface. An application might involve
determining the initial accommodation space for a region of thinned crust, or
equivalently, the rise in elevation of a region of thickened crust. To quantify the
discussion we assume that the total thickness c; of the crust in column 1 is 35 km,
and the thickness m; of the underlying lithospheric mantle is 65 km. This results
in a total thickness for column 1 of 100 km, with the top of the column serving as
the datum. The total thickness of column 2 is also 100 km, but we assume that the
crust thickness ¢, is only 30 km. The resulting 70 km of available material is
either mantle m, or air a,. Thus the sum m, + a, is 70 km. We can assume typical
densities for the layers, with p, = 2700 kg m3, Pm = 3300 kg m?, and
Pair =0kg m™3. Inserting in (2-1) gives us:

- p.(35)g+p,(65)¢ = p (30)g+p,(70-a))g (2-3)

The acceleration of gravity g cancels on both sides, yielding:

p.(35-30) = p, [(70-a,) —65] (2-4)

which reduces to:

p.(5) =p,(5—ay) (2:5)

and finally to:

a, =5 (1 - B—‘-) 28 T~

m

The above densities yield about 0.9 km for a,. Thus a change of 5 km in crustal
thickness results in a change in elevation of slightly less than 1 km.

This example is the simplest form of isostatic balance. We can add complica-
tions by assuming that accommodation space created by subsidence associated
with crustal thinning is filled by either water or sediment. For either, the last term
on the right-hand side of (2-1) is replaced by equivalent terms for sediment
(ps» s2) or water (p,, wy). Equation (2-3) then becomes:

P.(35)8+p, (658 = p,(30)g+p, (T0-w)) g+p, W, 27
The equivalent to (2-6) is:
(pm 0 pc)
=5— (2-8)
w? P, P

For an assumed density of water p,, of 1000 kg m3, Wy is 1.3 km, and if the space
is filled with sediment, p, is 2000 kg m™3, and s, is approximately 2.3 km.

In this example, we see that thinning the crust from 35 km to 30 km creates
slightly less than 1 km of accommodation space. If the space is filled initially with
water, it will deepen to approximately 1.3 km. The final thickness of sediment that
can fill this space under conditions of isostatic equilibrium is 2.3 km.
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To appreciate the importance of a process that produces accommodation space
such as crustal thinning, we can investigate the effect of depositing 2.3 km of sed-
iment on the Earth’s surface. Because isostasy must be maintained, we can incor-
porate a third column (column 3 of Figure 2-1) that resembles our standard
column in that crustal thickness is constant, with ¢y = c¢3, but mass added in the
sedimentary load will result in a smaller thickness of the mantle layer (m3 < my).
In this example, we no longer maintain the total column thickness of 100 km. The
depth of compensation remains at the same depth (relative to our datum at the top
of column 1), but the top of the sediment pile will extend above that by the
amount that the total thickness of column 3 exceeds the thickness of column 1.
The equivalent form of (2-1) is then:

(pert+p,m)g = (p.c3+p,ms+p.sy)e (2-9)
which yields the following equation with relationships for column 3 and column 1
used:

(p35+p,05)8 = (p35+ P, (65-x) +p2.3)g (2-10)

Here we want to solve for x, which is the decrease in that part of the lithospheric
column represented by the mantle. The crustal terms and g are equivalent on both
sides of the equation, leaving

p,05 =p, (65-x) + p,2.3 (2-11)
which becomes
p,.x =p,23 (2-12)
or
Py
x=_-23 2-13
o (2-13)

For the densities of sediment and mantle selected, x = 1.4 km. The mantle layer of
column 3 is thus about 63.6 km in thickness, and column 3’s total thickness is (s3
+ ¢3 + mj3), which is about 100.9 km. Thus, the topography that results from
depositing 2.3 km of sediment on the Earth’s surface is equivalent to the accom-
modation space necessary to create a basin filled with sediment 2.3 km thick.

In discussing isostasy and creation of accommodation space, we touched on
the one-dimensional nature of isostasy, which allows columns to be equated in a
simple way but has limited application to actual basins. Only in broad basins is
the concept of isostasy valid. The breadth of a basin necessary for us to use isos-
tatic assumptions will be determined when we discuss flexure below. In general
though, simple isostatic assumptions provide only a first approximation to the
subsidence response of the lithosphere and the creation of accommodation space.

ISOSTASY AND BACKSTRIPPING

Isostatic assumptions are important in basin subsidence histories and in develop-
ment of “geohistory” diagrams. Basin subsidence histories are usually based on
stratigraphic columns or borehole logs, and as such are readily analyzable with
isostatic models. A primary goal of “backstripping” in such an analysis is to
determine the manner in which the basin would have subsided if sediments had
not been deposited, thereby permitting us to decide among different hypotheses of
basin formation. Backstripping determines the rate and magnitude of the creation
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of accommodation space, independent of the sediment supply. Backstripping
results are often shown in geohistory diagrams similar to Figure 2-2. While such
diagrams are helpful, it is important to remember that they normally include the
assumption of local isostatic compensation. If that assumption is invalid, the
interpreted backstripping history may be flawed, as will be apparent in the discus-
sion of flexural subsidence that follows.

LITHOSPHERIC FLEXURE

The manner in which the lithosphere deforms under a load is reflected in the
geometry of sedimentary basins. When supracrustal loads are applied, as in over-
thrust terrains, the developing foreland basin is deepest adjacent to the load and
usually shallows across the basin to a region of relative uplift accompanied by
erosion. In rift basins, the depositional center is usually restricted to the interior
of the rifted region. In passive margin basins, an offshore depositional center thins
landward to a region of uplift and possibly erosion. Such basin geometries (with
the possible exception of rift basins) are not compatible with the simple model of
isostatic subsidence described previously. If we assume isostasy, the addition of a
load, such as a thrust sheet, results in subsidence only immediately below the load
and does not allow a basin to form except to the degree that depressions may form
between folds or thrust sheets. Thus, the existence of other types of basins argues
that we must look beyond isostasy to understand the development of accommoda-
tion space.

The fact that basins extend significantly beyond the loading mass implies that
the lithosphere has mechanical strength that allows the load to be supported
broadly by the lithosphere. Such behavior can be described as flexure. In fact, the
response of the lithosphere should always be considered from a flexural stand-
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point. Where broad loads are applied to the lithosphere, the flexural response is
equivalent to the isostatic response described above, so that isostasy is an end-
member case of flexure.

Here we will consider the lithosphere to be an elastic body, but flexure also
can be described by more complex rheological models that include viscous and
plastic deformation, in addition to elastic response. We derive the equations that
describe elastic flexure of the lithosphere, evaluate the elastic properties of the
lithosphere, and develop a model that allows us to simulate any load distribution.
Such a model can describe the creation of accommodation space and the subse-
quent subsidence history of basins.

The Lithosphere as an Elastic Beam

In standard plate-tectonic models, the Earth’s lithosphere is the rigid outer layer
of the earth that supports significant stress over geologic time. This ability to sup-
port a finite level of stress, albeit with associated elastic strain, allows the litho-
sphere to deform in elastic flexure when an external load is applied (Turcotte and
Schubert, 1982). Rather than repeat Turcotte and Schubert’s entire derivation, we
will extract material most relevant to basin development.

The concept of elastic flexure is illustrated when we cross a stream on a fallen
log. Our weight on the log is a load that causes flexure of an elastic beam, the log.
When the load is removed from the beam, the log returns to its original shape. In
this way, elastic deformation is recoverable. However, when we deal with the
lithosphere as an elastic beam or elastic plate, we must modify the fallen-log anal-
ogy. Unlike the log, the lithosphere rests on a substratum, the asthenosphere, that
can support the beam and thus reduce its downward flexure when a load is
applied. Therefore,we start with the basic equations of elastic flexure and later
modify them to incorporate complications of the combined lithosphere and
asthenosphere.

After application of a load to an elastic beam or plate, the beam or plate
deforms until its geometry is in equilibrium under the forces and torques acting on
it. A schematic view is given in Figure 2-3. A beam in equilibrium with the forces
and torques applied to it implies that on any small section of the beam, the torques
and forces are balanced. This permits us to derive the basic differential equation
that describes elastic flexure. Figure 2-4 shows forces and torques acting on a

Peripheral Bulge

Figure 2-3

Flexure resulting from load applied to elastic beam.
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small section of the beam. The force balance in the vertical direction on the small
element is ~

(2-14)

where: ¢g(x) = downward force per unit area,
V = net shear force that acts on cross section of plate in vertical
direction.

Equation (2-14) states that the net shear force acting downward across the top of
the small beam segment is balanced by forces acting on the ends of the segment.
In differential form this can be written as

= X 2-15

emE (2-15)

Also acting on the beam segment are moments M and M+dM, which combine to
give a net torque dM on the segment. Additionally, there are horizontal forces P
on the segment that act with a net lever arm length of dw to produce a torque of
—Pdw. Similarly, the forces (described generally by V) acting on the ends of the
segment generate a torque Vdx acting on the segment. For the beam segment to be
in equilibrium, these torques must also balance:

dM — Pdw = Vdx (2-16)
This is equivalent (in differential form) to
aM dw
o= i -17
& @

We can describe shear force V in terms of the downward force g(x), by differ-
entiating (2-17) with respect to x, and substituting (2-15), leading to

g2y 2

M _ g +pY (2-18)
dx dx”

Equation (2-18) describes deflection w in terms of both load g(x) and bending
moment M. If M can be described in terms of either w or g(x), then we have the
equation we seek. By implementing the elastic relationships between stress and

Figure 2-4

Forces and torques acting on element of elastic beam. In elastic equilibrium, all
forces and torques balance.
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strain, bending moment M can be related to curvature of the beam (the second
derivative of deflection w with respect to x) and to the appropriate elastic proper-
ties of the beam, such that

2
. ,_Dﬁi_.‘;’ (2-19)
dx
Parameter D is the flexural rigidity, a measure of elastic strength of the beam
given by

3
D = "—Eh“— (2-20)
12(1-v?
where: E = Young’s modulus,
v = Poisson’s ratio,
h = elastic thickness of beam.

Later, we will return to the importance of 4, the elastic thickness. Substituting (2-
19) in (2-18) yields the general equation for deflection of an elastic beam under an
applied load:

D— = g(x) - P—— (2-21)
dx ’ dx*

Equation (2-21) is the basis for our discussion of the elastic deformation of the
lithosphere. We must solve this differential equation, subject to assumed bound-
ary conditions, to simulate the behavior of the crust in the development of sedi-
mentary basins.

Lithospheric Conditions

In solving (2-21), boundary conditions must be applied that best simulate the
properties and geometries of the combined crustal and lithospheric system. We
must determine the best way to represent the actual lithosphere within the con-
fines of the model. The two characteristics of the plate that have the largest effect
are its continuity and its elastic properties.

Of major importance is the decision whether the lithosphere is better repre-
sented as a continuous or broken plate. In a continuous-plate formulation, the
applied load, such as mountain loads or basin fill, are assumed to be applied to the
lithosphere at locations far from the ends of the plate. This condition is usually
incorporated in most simulations of basin evolution, and as we shall see, it leads
to a straightforward modeling algorithm. By contrast, the broken-plate formula-
tion is appropriate where the loads are applied near the end of a plate, or over a
fundamental zone of weakness in the lithosphere. The choice of continuous or
broken lithosphere leads to somewhat different formulations of the modeling pro-
grams.

The material property by which we parameterize the flexural behavior of the
lithosphere is the flexural rigidity D in (2-20). Of the terms that describe flexural
rigidity, both Young’s modulus E and Poisson’s ratio v vary relatively slightly
with rock type or crustal composition. Typical values are 0.25 for v and 70 GPa
(Gigapascals) for E. Parameter h, which describes the elastic thickness of the
plate, is dominant in controlling flexural rigidity and consequently the flexural
behavior of the modeled lithosphere. There are two principle procedures for deter-
mining an appropriate value for 4, and consequently for flexural rigidity D.

16
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A direct method for estimating % is to determine the thickness of the litho-
sphere in accordance with temperature and stress conditions that allow elastic
behavior over geologic time scales. Most geologic materials behave elastically on
geologic time scales of a million years or longer, provided that temperatures and
stresses are within certain bounds. This approach involves characterizing the
deformational behavior of the lithosphere through the use of strength envelopes
(Figure 2-5). With strength envelopes, the elastic thickness is determined by that
part of the lithosphere where the bending stresses generated by flexure are within
the region which deforms elastically (Figure 2-5). Alternatively, studies of sedi-
mentary basins, oceanic lithospheres, and continental interiors have led to a sim-
pler definition of elastic thickness based primarily on the temperature distribution
within the lithosphere. Combined temperature and structure models have shown
that the 450 °C isotherm in the lithosphere is a reasonable marker for the base of
the elastic lithosphere. Both strength-envelope and temperature-structure models
give comparable elastic thicknesses, but because of its simplicity, the tempera-
ture-structure model is most often used in flexural studies.

Typical values for elastic thickness of the continental lithosphere range
between 5 and 100 km. Lower elastic thicknesses occur in regions of very high
heat flow and high crustal temperatures, as in the Basin and Range Province of the
western United States and in rift regions. Values between 50 and 100 km occur in
cooler, older, more stable regions, such as the shields and cratons. Elastic thick-
nesses of ~5 and ~55 km yield flexural rigidities D of 102! Nm (Newton-meters)
and 10%* Nm, respectively.

Flexure of a Continuous Plate

We now present methods and algorithms for flexure of a continuous plate. Flex-
ural models typically assume that loads are line loads that are infinitely narrow,
and that basin depressions are filled with sediment at all times. These assump-
tions, described in detail by Turcotte and Schubert (1982), provide a good starting
approximation for general basin development. But we wish to incorporate erosion,
sediment transport, and basin filling, and therefore we need loads of finite width,
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Figure 2-6  Diagram showing geometry of Green’s-function load used in flexure-model
formulation. Parameters used in Equations 2-22 and 2-23 are shown.

and flexural depressions that can be filled with sediment employing algorithms
presented later.

Our approach is to discretize loads into finite-width elements of specified
width, height, and density. We could solve (2-21) directly for the distributed load,
but this would provide a complicated and non-general solution. It is better to
solve (2-21) for a simple unit load of width Ax, unit height, and standard density.
This unit load then can be scaled to simulate loads of differing height and density,
and shifted to simulate the spatial pattern of actual loads. We can sum the flexure
produced by each shifted, scaled unit load to obtain the total flexure.

This technique takes advantage of a well-known analytic approach using
Green’s function, named after George Green, a self-taught, eighteenth century
English mathematician whose memoir that introduced his function was practically
unknown until Lord Kelvin had it reprinted in 1846. Scaling, shifting, and adding
the unit loads is termed a convolution. We use a Green’s-function convolution
because it is efficient for treating complex load and basin-fill geometries.

The Green’s-function solution of (2-21) for a continuous plate with a finite-
width load is given by two equations. One is applicable underneath the rectangu-
lar load, and the other applies to regions to the right or left of the load. The con-
figuration of the Green’s-function model is shown in Figure 2-6, and the solution
for the node beneath the unit load is:

- K KAX] AAx
= -5 2-2exp [‘T cos ") (2-22)

The solution for regions away from the load is:

w = "15{ (exp [-LAx (¢ +€)] cosAAxc— exp [-AAx (c —€) ] cosAAxc)  (2-23)
In (2-22) and (2-23)

K - pcrust i pair

(2-24)
P Poir

and
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Elevation (km)

(2-25)

where A defines the restoring force caused by subsidence of the crust into the
asthenosphere. In (2-25) we assume that p;, is zero.

Equations (2-22) through (2-25) are incorporated in Program 1 on the accom-
panying diskette. Program 1 is a FORTRAN routine for calculating flexural and
isostatic adjustments of a continuous elastic plate subject to arbitrary loads. Sub-
routine INITIALIZE specifies the initial values of parameters used in the solution,
and subroutine UNITLOAD evaluates Green’s function for a particular load ele-
ment width and flexural rigidity. Subroutine CONVOLVE incorporates loads of
different heights and densities according to concepts shown schematically in Fig-
ure 2-7. The width of each load element is constant for all elements in CON-
VOLVE, but the magnitude of the width depends on the scale of the region being
investigated. Determining the Green’s function and convolving are the heart of
the algorithm. The other subroutines in Program 1 provide input and output.

Elevation (km)
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0
Position (km) Position (km)
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5
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Figure 2-7

Diagram illustrating convolution for determining effects

of distributed load. Each load element produces

flexure proportional to its mass. Individual flexural
responses are spatially shifted and then summed to C
provide overall flexural response. .

0 125 250
Position (km)
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Figure 2-8

Diagram showing incorporation of distributed load in broken-plate formulation.
Parameters that describe position of each load element are indicated.

Broken-Plate Flexure

Evaluating flexural response to a broken plate is more complicated than for a con-
tinuous plate. For a continuous plate, the location of the load relative to bound-
aries does not matter because there are no ends or boundaries to the plate. For a
broken plate, the location of the load relative to the plate end, or to a break in the
plate, is critical, requiring modification of the general approach and the equations.
The solution for a flexed broken plate should reduce to the solution for a continu-
ous plate when the load is sufficiently distant from the plate end. Figure 2-8
shows the configuration of the plate and load for a simple distributed load on a
broken plate. The solution is given by:

AK .
W= —-exp (=Ax) (coshx + sinkx) (2-26)

+AKexp [-A(x+c)]exp (—Ac) (A—B+C)

where: A = cosAhccosA (x +c)

B= % [ (sinAc — cosAc) cosh (x+¢) ]

C= % [ (sinAc — cosAc) sink (x +¢) ]

Because the solution depends on the position of the load, we must explicitly
incorporate load position in the solution. This is accomplished in Program 2, a
slightly modified version of Program 1. The general sequence of steps in the pro-
grams is similar, but for broken-plate flexure subroutines UNITLOAD and CON-
VOLVE in Program 1 are replaced by subroutine SEMI_INFINITE_BEAM in
Program 2.

Using Programs 1 and 2

For input of flexural parameters and load configurations, Programs 1 and 2 pro-
vide an interface module, subroutine INPUT, that generates a data file for subse-
quent use. Alternatively, an input data file may be provided by the user. Program 1
(continuous plate) is more advanced than Program 2 (broken plate) in that it
allows an initial baseline of arbitrary elevation to be specified. This permits fea-
tures such as loading on the edge of a continent to be represented by incorporating
the geometry of the continental margin. Both programs allow multiple loading
events, using individual load elements of specified height and density. Program 1

20
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Figure 2-9

Cross section showing simple load geometry used to evaluate role of flexural rigidity
g\ flexur?. Series of rectangular loads approximate polygonal load indicated by
ashed line.

also allows inclusion of hidden loads generated by density anomalies within the
plate. Such features are useful for modeling rift-related basins. For a dynamic
interactive model, where mass is redistributed by erosion and deposition, Pro-
grams 1 and 2 must be coupled with programs discussed in subsequent chapters.
An example is provided in Chapter 7, where Program 1 is linked with sediment-
transport programs to produce Program 25.

SIMULATION OF LITHOSPHERIC FLEXURE

Here we use Program 1 and Program 2 to treat simple problems involving litho-
spheric flexure. Through examples, we explore the nature of flexure and varia-
tions in flexural response to boundary conditions, flexural parameters, and load
geometry. Initial examples provide insight into lithospheric flexure and its sensi-
tivity to different parameters. We build on these examples to investigate responses
of simple mountain-basin system under different assumptions of basin evolution.

Experiment 2-1: Flexural Rigidity

In Experiment 2-1 we simulate response of the lithosphere to simple loads. Most
of the simulations use the equivalent of a polygonal load. A polygonal load can be
approximated by a series of narrow rectangles as shown in Figure 2-9, where each
load element is 5 km wide, with heights as specified. An example input file for
Experiment 2-1 is provided in Table 2-1. The file was generated with the INPUT
module in Program 2-1.

Experiment 2-1 consists of four solutions, each using a different value for
flexural rigidity D. Experiment 2-1a uses the relatively low value of 1 x 1020
Newton-meters, corresponding to an equivalent elastic thickness of only 2.5 km.
The resulting flexure (Figure 2-10) is significantly less than under simple isostatic
assumptions, even for this relatively weak lithosphere. An important feature aris-
ing from crustal flexure is the region of positive relief called a peripheral bulge
(Figure 2-10). The magnitude of the peripheral bulge is significantly less than the
maximum deflection beneath the load, and often will be a subtle feature in actual
basins. As flexural rigidity increases (Experiment 2-1b and c), the flexural deflec-
tion and associated peripheral bulge decrease, but the width of the flexure
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Cross sections showing flexural responses to load
for lithospheric flexural rigidities of (A) 1 x 102° Nm, -5
(B) 1 x10?' Nm, and (C) 1 x 10% Nm. Positions of 0 125 250
peripheral bulges are indicated.
Position (km)
A
Table 2-1  Input file for Experiment 2-1a
exp2-1a /name for this particular simulation
0 / baseline flag, 0 = no baseline; nonzero number indicates
number of baseline points
1 /number of loading events
5000.0 0.10E+21 /width of load elements and flexural rigidity
5 /Inumber of load elements defining first loading event
98 5000. 2700. /node number, height, density of load element 1
99 6000. 2700. /node number, height, density of load element 2

100 7000. 2700. / etc.
101 6000. 2700. / etc.
102 5000. 2700. / etc.

increases (Figure 2-10). In Experiment 2-1c, where the flexural rigidity is more
realistic at 1 x 10?2 Nm (equivalent to an elastic thickness of about 12 km), a
flexural depression is produced that is wide enough that it could represent a devel-
oping sedimentary basin.

Experiment 2-2: Broken-Plate Flexure

Experiment 2-2 evaluates the differences between continuous-plate and broken-
plate flexure. Two solutions investigate the effect of varying flexural rigidity
(Experiment 2-2a and Experiment 2-2b), and a third solution investigates load
position relative to the end of the plate (Experiment 2-2c). Table 2-2 provides the
input file for Experiment 2-2a. The load is now located at the end of the plate, and
there are no hidden loads. The resulting flexure for Experiment 2-2a (Figure 2-11)
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and Experiment 2-2b (Figure 2-12) shows greater maximum deflections, enhanced
peripheral bulges, and narrower basins compared with Experiment 2-la and
Experiment 2-1b, which have corresponding flexural rigidities.

If the load is moved progressively away from the broken end of the plate, the
flexure becomes increasingly similar to continuous plate flexure. Experiment 2-2c
investigates the effect of a 50 km shift in load position. This shift, while relatively
small for a flexural rigidity of 1 x 10?2 Nm, dramatically changes the flexural
response. Figure 2-13 shows that deflection to the right, toward the interior of the
plate, is indistinguishable from continuous flexure (Figure 2-10). Deflection to the
left, toward the end of the plate, however, differs substantially from continuous-
plate flexure.

Table 2-2  Input file for Experiment 2-2

broken1ia /Same entries as Table 2-1 but with no baseline flag.
1

5000.0 0.10E+22

5

1 5000. 2700.

2 6000. 2700.

3 7000. 2700.

4 6000. 2700.

5 5000. 2700.
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Figure 2-11  Cross section showing results of Experiment 2-2a for broken-plate flexure with test
load and flexural rigidity of 1 x 102" Nm. Load is placed at end of plate.
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Figure 2-12  Cross section showing results of Experiment 2-2b for broken-plate flexure with test

load and flexural rigidity of 1 x 10?2 Nm. Load is placed at end of plate.
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Figure 2-13

Cross section showing results of Experiment 2-2c for broken-plate flexure with test
load and flexural rigidity of 1x10%2 N m. Load is placed 50 km further inboard.

Experiment 2-3: Source and Basin Evolution

In Experiment 2-3 we evaluate the evolution of a source and basin system under
simplified conditions. By source and basin system, we mean a load and its adja-
cent basin where the load is a feature of positive relief capable of supplying sedi-
ment to the basin. For the load we use a simple mountain range with geometry
shown in Figure 2-14. The initial solution (Experiment 2-3a; Figure 2-15) shows
the effect of the mountain load. Next, the resulting basin is filled with water
(Experiment 2-3b) and then with sediment (Experiment 2-3c and Experiment
2-3d; Figure 2-16 and Figure 2-17). In these solutions, the sediment that fills the
basin is derived externally from the mountain range. While unrealistic, it allows
us to explore details of the developing basin. Finally, we examine how the basin
geometry differs when the basin-filling sediment is derived from the mountain
range (Experiment 2-3e; Figure 2-18).

Experiment 2-3 provides examples of forward modeling where we assume the
initial shape of the mountain load and then follow the basin’s evolution forward
through time. The resulting model is a simplified version of the coupled model
described in Chapter 7 (Program 25). In Experiment 2-3, we treat the basin devel-
opment as a set of discrete events. First, the mountain load is emplaced; second,
water fills the resulting accommodation space; and third, sediment fills the basin.
At each step, the geometry of the basin changes. Later we will discuss ways in
which the inverse solution can be determined, involving determination of the load
that produced an observed sedimentary sequence.

The simple triangular load in Figure 2-14 produces the flexure shown in Fig-
ure 2-15 (input data in Table 2-3). Our choice of 1 x 1023 Nm for the flexural
rigidity corresponds to an elastic thickness of approximately 25 km. The resulting
basin is about 90 km wide at zero elevation. If the depression generated by the
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Figure 2-14  Cross section for Experiment 2-3. Wedge-shaped mountain serves as initial load
that subsequently generates accommodation space.
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Figure 2-15  Cross section computed in Experiment 2-3a, showing basin formation without
basin fill where D = 1 x 1023 Nm.
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Table 2-3 Table 2-4
Input file for Experiment 2-3a. Input file for Experiment 2-3b.
EXP2.3a EXP2.3b
0 0
1 2
10000.0 0.10E+24 10000.0 0.10E+24
20 20
85 200. 2700. 85 200. 2700.
86 500. 2700. 86 500. 2700.
87 800. 2700. 87 800. 2700.

88 1100. 2700.
89 1400. 2700.
90 1700. 2700.
91 2000. 2700.
92 2300. 2700.
93 2600. 2700.
94 2900. 2700.
95 3200. 2700.
96 3500. 2700.
97 3800. 2700.
98 4100. 2700.
99 4400. 2700.

100 4700. 2700.
101 5000. 2700.
102 3800. 2700.
103 2600. 2700.
104 1400. 2700.

0

88 1100. 2700.
89 1400. 2700.
90 1700. 2700.
91 2000. 2700.
92 2300. 2700.
93 2600. 2700.
94 2900. 2700.
95 3200. 2700.
96 3500. 2700.
97 3800. 2700.
98 4100. 2700.
99 4400. 2700.
100 4700. 2700.
101 5000. 2700.
102 3800. 2700.
103 2600. 2700.
104 1400. 2700.
11

104 140. 1000.
105 1400. 1000.
106 1150. 1000.
107 900. 1000.
108 700. 1000.
109 505. 1000.
110 350. 1000.
111 225. 1000.
112 120. 1000.
113 42. 1000.
114 5. 1000.

0

flexure is filled with water (Experiment 2-3b using input file in Table 2-4), which
is equivalent to adding a thickness of water comparable to the depression gener-
ated by the mountain load, the basin is modified in two ways. First, water is an
additional load and causes additional subsidence. As a result, the water does not
completely fill the modified basin and its surface is about 200 meters below the
basin top. Second, the load of water causes the basin to become 10 to 20 km
broader because the load on the crust is broader.

The effect of filling the basin with sediment (Experiment 2-3c) is similar to
filling with water but is greater because the density of sediment is greater. To
investigate the effect of increased density, the input file of Table 2-4 was modified
to replace the density of water with that of sediment (2200 kg m™3). While not fill-
ing the basin, it nevertheless allows us to investigate the effect of the sediment
load. Results are shown in Figure 2-16. The basin remains unfilled by as much as
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Figure 2-16
Cross section showing basin evolution modified by inclusion of sediment in
Experiment 2-3c.

345 meters vertically, and the maximum peripheral bulge has less amplitude and
has migrated 20 km farther from the mountain front.

The basin can be filled completely with sediment by an iterative scheme
where additional loads are added successively to fill the remaining accommoda-
tion space until the basin is filled to a specified level. In Experiment 2-3d, several
such iterative steps fill the basin with sediments, but we also allow an additional
load of about 100 meters of water above the final sediment pile. The input file for
Experiment 2-3d is in Table 2-5 and results are shown in Figure 2-17. The final
basin is about 50 km wider than the initial depression, and at its deepest point
(away from the mountain load), it is more than 400 meters deeper than the initial
accommodation space generated from the mountain load.

Here we should reconsider the issue of isostatic versus flexural response of
the lithosphere to applied loads. In Experiment 2-3d the net effect of emplacing a
mountain and sediment load allowed a basin to form that is more than 1600 meters
deep, with 100 meters of water in addition. We can now do a “thought exercise” in
which this 1600-meter-thick sequence at node 105 in Experiment 2-3 has been
estimated from measured sections or borehole data and we wish to back calculate
the tectonic subsidence in the absence of loads of sediment and water. Assuming
isostatic compensation [Equation (2-3)], 1600 meters of sediment plus 100 meters
of water should cause about 1100 meters of subsidence at node 105. That is to say,
if we removed the sediment and water, we would expect 1100 meters of rebound,
moving the basin floor to 600 meters below the zero datum. Therefore, our esti-
mate of tectonic subsidence at node 105 would be 600 meters. However, we know
the tectonic subsidence at node 105 because it is the subsidence generated at that
point by the initial loading of the mountain system, as obtained in Experiment
2-3a (Figure 2-15). The actual deflection at node 105 is about 1375 meters. If we
assumed only isostasy in our analysis, we would have significantly underesti-
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Table 2-5
Input file for 4 —
Experiment 2-3d.

EXP2.3d
0
3

10000.0 0.10E+24

20

85 200. 2700.
86 500. 2700.
87 800. 2700.
88 1100. 2700.
89 1400. 2700.
90 1700. 2700.
91 2000. 2700.
92 2300. 2700.
93 2600. 2700.
94 2900. 2700.
95 3200. 2700.
96 3500. 2700.
97 3800. 2700.
98 4100. 2700.
99 4400. 2700

100 4700. 2700.
101 5000. 2700.
102 3800. 2700.
103 2600. 2700.
104 1400. 2700.

12
104 485. 2200.

105 1647. 2200.
106 1409. 2200.
107 1179. 2200.

108 963. 2200.
109 765. 2200.
110 590. 2200.
111 436. 2200.
112 307. 2200.
113 199. 2200.
114 113. 2200.
115 46. 2200.
13

104 100. 1000.
105 100. 1000.
106 100. 1000.
107 100. 1000.
108 100. 1000.
109 100. 1000.
110 100. 1000.
111 100. 1000.
112 100. 1000.
113 100. 1000.
114 100. 1000.
115 100. 1000.
116 50. 1000.
0

Elevation (km)

0 250 500

Position (km)

Figure 2-17

Cross section computed in Experiment 2-3d of final basin geometry, including
sediment plus 100 meters of water. Geometry shown is obtained with successive
iterations. Node 105 in Table 2-5 corresponds to 300 km on x-axis.

mated the backstripped depth of the basin, and entirely missed the importance of
the adjacent mountain load in producing the basin. Because of the flexural
strength of the lithosphere and the finite extent of the load, the load of sediment
plus water produced only about 400 meters of subsidence. Most of the accommo-
dation space produced is the result of the emplacement of the mountain system.

Thus far we have produced a coupled mountain-and-basin system that is in
flexural equilibrium, given that the initial load is not eroded and the source for
basin sediment is external. In Experiment 2-3e, material removed from the moun-
tain load fills the basin. Two-thirds of the material is deposited in the basin, with
the remaining one-third assumed to bypass the basin as the products of chemical
weathering. The results are shown in Figure 2-18, with input file in Table 2-6.
Although we have removed as much as 1200 meters from parts of the mountain
load, rebound of the underlying lithosphere causes the final topography to be
reduced by about 750 meters compared with our previous uneroded model (Exper-
iment 2-3d). Also, removal of load from the mountain produces less accommoda-
tion space for sediment. As a result, material that was below the datum in
Experiment 2-3d is now above the datum (although it may not erode, as it is below
the elevation of the peripheral bulge).

Finally, we wish to evaluate the flexural response to a distributed load such as
a mountain system if the plate is broken rather than continuous. Figure 2-19
shows the results of applying the same load to a broken plate. As noted before, the
closer the load is to the end of the plate, the greater the difference between the
broken-plate and continuous-plate flexure models. Because the load is reasonably
wide (about 200 km), the flexural response on the side away from the broken end
is nearly indistinguishable from the continuous-plate flexure. This is important
because it allows us to use the simpler continuous-plate model even if the plate
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Table 2-6
Input file

for Experiment 2-3e.

EXP2.3e
0 .
2

10000.0 0.10E+24

20

85 200. 2700.
86 500. 2700.
87 800. 2700.
88 1100. 2700.
89 1400. 2700.
90 1700. 2700.
91 2000. 2700.
92 2300. 2700.
93 2450. 2700.
94 2650. 2700.
95 2700. 2700.
96 3000. 2700.
97 3150. 2700.
98 3350. 2700.
99 3500. 2700.

100 3800. 2700.
101 3800. 2700.
102 2800. 2700.
103 1600. 2700.
104 1000. 2700.

13
103 250. 2200.
104 635. 2200.

105 1547. 2200.
106 1359. 2200.
107 1179. 2200.

108 963. 2200.
109 765. 2200.
110 590. 2200.
111 436. 2200.
112 307. 2200.
113 199. 2200.
114 113. 2200.
115 46. 2200.
0

5
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Figure 2-18

Cross section showing results of Experiment 2-3e, which assumes sediment that fills
basin is derived from mountain load. Redistribution of sediment changes shape of
basin.

contains a break, provided that the basin of interest is far inboard of the break, as
for example where terrane is thrust upon the edge of a plate.

An Inverse Approach

The models just described move forward in time and therefore fit naturally with
the basin-filling models of subsequent chapters. Given the temporal evolution of a
load, the models predict the temporal evolution of a basin. But often the geologic
questions to be answered require the inverse approach. The temporal evolution of
the basin is known from the geometry and characteristics of the basin fill, and we
want to determine the temporal evolution of the load. To accomplish this we
reverse the order of steps in Experiment 2-3. The basin fill is placed on the crust
first and flexure calculated. The fill will rise above the baseline because it is
impossible for a pile of sediment to create exactly the correct amount of accomo-
dation space. By trial-and-error we try different loading scenarios until the cou-
pled load-basin system produces an evolution consistent with its sedimentary
history.

RIFTING, CRUSTAL THINNING, AND HIDDEN LOADS

Basins are not created solely by thickening of crust. Thinning of crust during rift-
ing and extension causes flexure and also creates accommodation space, as illus-
trated in Figure 2-20, where flexure is caused by mantle material replacing crustal
material in the lithospheric column within the region of extension. The load is
simply the product of the volume of replaced material times the density difference
between crust and upper mantle. This load is internal to the plate and hidden from
view, but its effects are similar to those obtained by applying an excess mass to
the top of the plate, except that it occupies none of the region created by the flex-
ure.
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Figure 2-19  Computed cross section of foreland basin resulting from mountain load on a
broken plate. Resulting foreland basin closely resembles that developed in
continuous-plate model.

Extensional Basin/Hidden Loads

Pre-Extension Configuration

Post-Extension Configuration

Figure 2-20  Geometry in which extension of crust produces hidden load. Crustal thinning
causes crustal rock to be replaced by underlying mantle rock. Extension may
cause disruption of lithospheric isotherms (T1 to T4) which will lead to additional
transient subsidence.

Program 1 allows hidden loads to be incorporated via subroutine HIDDEN.
We assume that the load replaces crustal material, but because it is the density dif-
ference computed by subroutine HIDDEN that is ultimately convolved with the
Green’s function, we may assume any composition for the hidden load.
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Table 2-7

Input file for Experiment 2-4.

hidden1

4

97 0.

98 -2424.

102 -2424.

103 0.

1

5000.0 0.10E+23
5

98 2424. 2200.
99 2424. 2200.
100 2424. 2200.
101 2424. 2200.
102 2424. 2200.
5

98 20000. 2900.
99 20000. 2900.
100 20000. 2900.
101 20000. 2900.
102 20000. 2900.

In analyzing a region where rifting or lateral extension of the crust has
occurred, it is important to consider the distribution of temperatures in the litho-
sphere and the effect on flexure. If lithospheric material is brought rapidly closer
to the surface during extension, depth to a particular isotherm decreases (Figure
2-20). When rifting stops the lithosphere cools, but cooling may take tens of mil-
lions of years. Consequently, the strength and flexural rigidity of the plate
decrease during rifting. This decrease is well documented by backstripping stud-
ies along rifted continental margins. As the plate cools following rifting, it
increases in density, causing both a decrease in volume through thermal contrac-
tion and an additional load. This additional load acts on a stronger plate than did
the initial hidden load because a cooler plate is more flexurally rigid. Next we will
explore flexure resulting from hidden loads associated with rifting. In Experiment
2-4 we vary flexural rigidity both during and following rifting.

Experiment 2-4: Hidden Loads and Response to Rifting

Experiment 2-4 simulates the flexural response of a plate to a narrow rift, with
particular attention to the controls on the width of the basin produced. The geom-
etry of a load is shown in Figure 2-20, with the crust thinned by 20 km over a
region that is 25 km wide. Within this region the mantle is assumed to possess a
density of 3200 kg m™3, a value slightly less than the lithospheric mantle density
that represents partial inclusion of asthenospheric material and higher tempera-
tures of the plate during rifting. The assumed flexural rigidity helps control the
initial subsidence. In Figure 2-21, flexure resulting from a hidden load is shown
for four values of flexural rigidity. The lowest value (1 x 1014 Nm) produces an
isostatic response, while the higher values produce different patterns of flexure.
Observations in actual rift zones suggest low values of rigidity during initial
stages of rifting, but do not enable us to distinguish among values in the range of
1x 10 Nmto 1 x 10 Nm.

Rifting may occur over short time intervals, precluding development of basins
that are completely filled with sediment at all times. A typical response may
involve deposition of sediment both during and after rifting, with sediment form-
ing a load on a cooling and therefore increasingly rigid plate. The final response
to emplacement of any load is given by the response of the weakest plate that
exists during or after the loading. If the rigidity of the plate increases, the effect of
the previous low flexural rigidity is preserved in the record. However, if loads are
placed on a strong plate that decreases in flexural rigidity, the preserved response
will be that associated with the lowest flexural rigidity, and evidence of the initial
flexure is lost.

Modeling the combined effects of crustal thinning, subsequent cooling, and
sediment loading is accomplished by the input data listed in Table 2-7. Initial sub-
sidence is simulated through a baseline function. The baseline is defined by four
points in Table 2-7. The effect of sediment fill is simulated by an external load at
five nodes. Additional cooling and densification is simulated as a hidden load.
The response of the lithosphere to cooling and sediment deposition after rifting is
shown in Figure 2-22. If the lithosphere cools sufficiently so that the additional
loads (both hidden and sedimentary) act on a plate with rigidity of 1 x 1022 Nm, a
depression forms that is broader than the initial rift geometry. If, however, the
cooling lithosphere and sediment load a weaker lithosphere with a rigidity of
1 x 102 Nm, the basin geometry is quite different. An evolving rift basin may

32

CHAP. 2 BASIN CREATION AND SOURCE TERRAINS



E 1- £ 14
§ o s
s ®
3 A 3
w w
-2
-3
-4
-5
0 125 250 0 125 250
Position (km) Position (km)
A B
5 5
4 47
3 37
2 _ 27
< 3
E 11 £ 1
3 - g 4
w
2 -2
-3 -3
-4 -4
-5 -5
0 125 250 0 125 250
Position (km) Position (km)
C D
Figure 2-21  Cross sections computed in Experiment 2-4 showing flexural response
4

to hidden loads for flexural rigidities of (A) 1 x 10" Nm, (B) 1 x 10 Nm,

§0)1 x 102 Nm, and (D) 1 x 1022 Nm, that span transition from isostatic to
lexural response.

include evidence of pseudo-isostatic response, with low and intermediate flexural
rigidity, yielding a complex basin geometry and involved depositional history.

CRYPTIC LITHOSPHERIC LOADING

Not all tectonic processes that produce or increase accommodation space are as
readily recognizable as the loads described above, and for this reason they are
called cryptic loads. Horizontal compression acting on a plate is one example of a
cryptic load. Until now, we have neglected horizontal compression in (2-21)
because it causes only a small increase in the deflection. But Cloetingh and others
(1989) argue that in some cases this small deflection may create geologically sig-
nificant accommodation space. Another type of cryptic load may be caused by
mantle flow. Gurnis(1993) has argued that subduction and mantle flow induced by
descent of a subducted slab can produce a depression along a continental margin.
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We call these cryptic loads because it is very difficult to determine when they are
important and how large their effects might be. For example, isostatic backstrip-
ping a flexural environment produces artifacts that could be erroneously linked to
cryptic processes.

PRESERVATION OF SEDIMENTARY BASINS

Thus far we have ignored basin preservation. We have shown that it is generally
necessary to load the lithosphere to produce accommodation space. If the mass
that initially produced the accommodation space is removed, then the basin
should rebound and eventually disappear. The long-term existence of a basin sug-
gests that loads either must be preserved or the processes that created the basin
must change to preserve it.

Maintaining a Load

There are several ways in which the load producing a basin can be preserved. The
simplest way is the addition of a permanent hidden load such as occurs in exten-

34 CHAP. 2 BASIN CREATION AND SOURCE TERRAINS




sional basins. Only major changes in crustal temperature or subsequent tectonic
events are likely to modify the hidden load. '

Of more interest is how basins formed by supracrustal loading, such as fore-
land basins associated with thrust belts, are preserved. The history of a foreland
basin involving a simple overthrust geometry is shown schematically in Figure
1-8. When the thrust or mountain load erodes, the basin and load rebound, eventu-
ally leading to complete removal of both the basin and load (Figure 2-23). In this
light, it is surprising that basins such as the Taconic and Acadian Appalachian
basins of Pennsylvania remain, even though there is no obvious topographically
high load to maintain them. The explanation is that loads associated with the
Taconic and Acadian orogenic events were emplaced at least partly on the conti-
nental margin of North America. Therefore the baseline that controls erosion, sea
level, is substantially above the baseline on which the load sits, namely the conti-
nental margin. As shown schematically in Figure 2-24, such a situation allows
preservation of a significant fraction of a basin even when the load has eroded to
near sea level. In the Taconic and Acadian basins, there may be as much as 10 to
20 km of Appalachian load beneath the coastal plain of the mid-Atlantic region.

“Pocket” or small basins may be preserved differently. If the lithosphere
strengthens during deposition of sediment and before erosion of the initial load,

intra-Continental Overthrust

Figure 2-23

History of foreland basin system involving intra-continental
overthrusting where load is emplaced at base level. Basin is
eroded completely when load is eroded.

No Sediments

Sediments / No Erosion

Erosion / Rebound

Basin Removal
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Continental Margin Overthrust

No Sediments

Sediments / No Erosion

Erosion / Rebound

Basin Preservation

Figure 2-24

History of foreland basin system when load is emplaced
below baseline, as would happen along a continental
margin. In this case, basin may be preserved even after
reduction of mountain topography to sea level.

then the flexural geometry will change. A narrow deep basin on weak lithosphere
will rebound over a broader region. Such a situation will preserve much of the
original basin.

Rates of Crustal Rebound

Supracrustal loads eventually will be eroded and basins will rebound. The rate at
which rebound occurs is controlled by the rate of viscous flow in the lower crust
and upper mantle and the rate of erosion and redistribution of loads. Flow rates in
the crust and mantle place limits on the maximum rate of crustal response to
changing loads, while rates of erosion and redistribution of loads determine the
effective rate of rebound. Erosion and redistribution of loads are treated next.
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