Predicting the location of avulsion hazards on deltas
in the face of changing flood regimes
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1. Motivation

On densely populated deltas, the tendency for river channels to Previous work has shown that river avulsions preferentially occur around Our ability to forecast the location of future avulsion
catastrophically avulse poses a hazard to human life and property. a location that is set by backwater hydrodynamics, the interplay of events is limited because avulsions are relatively rare
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3. Numerical experiments

Constant discharge Variable discharge

Variable flood regimes lead to a preferential avulsion length
approximately equal to the backwater length. Flow-path selection
occasionally creates an erosional wave that triggers an avulsion
farther upstream.

Channels avulse farther
upstream when high-flow
events are more extreme
and more frequent.

symbols and shaded regions
represent the median &
range of values over
13 avulsion cycles

After the initial wind-up phase of the simulations, channels avulse
throughout the long profile without a preferential avulsion length.
Avulsion lengths generally increase through time, and are smaller
during episodes of trunk channel sedimentation.
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Upward-convexity of the profile in the backwater drives greater su-
perelevation compared to upstream. Downstream, superelevation is
reduced because sea level sets the potential energy minimum.

Successive lobe profiles feature a self-similar upward concavity,
leading to nearly uniform profiles of superelevation upstream of the
Initial shoreline and a sharp decrease downstream.
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4. Conclusions

We present a predictive model of delta-lobe construction & repeated avulsion that Is applicable to
deltas over a range of spatial scales, sediment supplies and flood regimes. Delta lobes build on top of

Variable flood regimes lead to a preferential avulsion length approximately equal Channels avulse farther upstream
to the backwater length, because intermittent deposition & scour in the backwater when high-flow events are

one another, demonstrating a distribution of avulsion lengths that is sensitive to flood regime. zone drives profile upward-convexity and a spatial maximum in superelevation. more extreme and more frequent.
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