

The Telemac system

From small scale processes...

.... to large scale applications

www.opentelemac.org

User club (October 2011): 130 participants 2000 users in more than 100 Countries

de l'Écologie, de l'Énergie,

CHANGER L'ÉNERGIE ENSEMBLE

du Développement durable et de la Mer

edf

Multi-scale, multi-physics

Bief Library

- Unstructured grids
- FORTRAN 90, PERL, MPI
- Finite elements / Finite volumes
- Implicit schemes
- Fundamental operation on matrix, vectors, scalars

Laboratoire National d'hydraulique et Environement

- Definition of basis function:

$$\sum_{j=1}^{n} \Psi_{j} = 1$$

- Decomposition of each variable:

$$f = \sum_{j=1}^{n} f_{j} \Psi_{j}$$

- Variational principles:

$$f = 0 \Leftrightarrow MF = 0$$

- Mass matrix: $M_{ij} =$

$$M_{ij} = \iint_{\Omega} \Psi_i \Psi_j d\Omega$$

Telemac-2D / Telemac-3D

Telemac-2D / Telemac-3D

- Other Important features
 - Cartesian or spherical coordinates
 - Courant numbers up to 10
- Robust and efficient

- Sensitivity of model results
 - Turbulence model (k-ε,mixing length)
 - Vertical grid resolution

Treatment of dry zones

- No element removal, all points treated even if dry
- Continuity, positivity of depth, conservation and monotonicity of tracers ensured by an edge-based treatment of fluxes (*Hervouet et al., AIRH congres, 2011*)

Malpasset dam break

Malpasset dam, 48 million m³, broke on 2 December 1959, there were 433 casualties.

champ de vitesses apres 60 s

Malpasset dam break

Linux	Telemac-2D	Telemac-3D
HP Z600		(2 planes)
1 proc.	52 s	188 s
8 proc.	11 s	36 s

Tomawac

Giovanni Mattarolo

Third generation spectral wave model

F: variance density directional spectrum

Conservation of the wave action:

- Shoaling
- Refraction
- Non-linear interactions
- Wind generation
- Wave dissipation (breaking, white capping)
- Wave-current interaction (Telemac-2d/Tomawac)
- Applications: oceanic to coastal zones

Waves in the Atlantic Ocean

Sisyphe / Sedi 3d

Bed load

 \rightarrow Total load /bed load formula \rightarrow Exner equation

$$(1-n)\frac{\partial Z_b}{\partial t} + div \vec{Q}_s = 0$$

<u>2D suspended load</u>

Non cohesive

D₅₀>60μm

Erosion-deposition rates

 \rightarrow Equilibrium concentration formula

 $E = W_s C_{eq}$

(e.g. Van Rijn, 1984)

• Deposition rate (implicit):

 $D = W_s C_{zref}$

• Sand grading effects

Cohesive

D₅₀<60μm

Erosion-deposition laws (Krone and Partheniades)

$$E = M \left[\left(\frac{\tau_0}{\tau_e} \right)^2 - 1 \right]$$
$$D = WsC \left[1 - \left(\frac{\tau_0}{\tau_d} \right)^2 \right]$$
Consolidation model

Sisyphe / Sedi-3D

2D suspended load

Correction on the convection (Huybrechts, Villaret, and Tassi, River Flow 2010)

 $\overline{CU} = \alpha \overline{C} \overline{U} < \overline{C} \overline{U}$ Assuming:

- Log velocity profile
- Rouse concentration profile

$$\alpha = h \frac{\int_a^h U(z)C(z)dz}{\int_a^h U(z)dz \int_a^h C(z)dz} \le 1$$

3D suspended load

Treatment of boundary condition

- Sensitivity of model results to
- -turbulence model (k-ε, ...)
- -Vertical grid resolution

Trench evolution in 2D/3D

concentration profiles (tm1=k- ϵ ; tm2=mixing length)

Trench evolution in 2D/3D

Bed evolution after t=15 hs

2D model overestimates transport rates

Convection velocity correction

 \rightarrow Improves the results

 \rightarrow 2D model : good compromise between model accuracy and computational time for non-recirculating flow

Secondary flow pattern in river

Telemac-3d : flow patterns at a river difluence (Tassi, Vionnet and Morell, 2011)

Meandering channels

Telemac 2D/Sisyphe

→Secundary current parameterization in 2D

Yen's experiments (1995)

bedload only

Telemac 3D/Sisyphe

→ Turbulence model

Numerical simulation of bedforms

Flume experiments

- •Length: 30m
- •Width: 5m (2x2m)
- •Discharges: 77-240 l/s
- •Bed-load: sand (D50≈1mm)

Numerical modelling with Telemac3D / Sisyphe

Analena Goll, PhD student

Numerical simulation of bedforms

Analena Goll, PhD student

BAW

Method of feedback for the bed roughness

Large scale morphodynamics

Dyfi Estuary (Wales,UK)

- Shallow sandy macro-tidal estuary
- Multiple banks and channels
- Tidal range : 2 to 4.3 m offshore
- Sediment : sand 0.2-0.25mm
- River input : 25 m³/s annual mean 400 m³/s 1 in 100 yr

→Field validation of the modelled bed roughness (for dunes)

Dify estuary morphodynamics

<u>Triangular Mesh</u> BlueKenue 91,000 nodes, resolution :1km / 15m

Bathymetry

LiDAR survey (2004) + Multibeam Multibeam(2007) →Bedforms measurements

Dify estuary morphodynamics

Dify estuary morphodynamics

Effect of feedback method for bed roughness

 \rightarrow Bottom shear stress increases (by 122%)

 \rightarrow Total sediment transport rate increases (by 74% on average)

Conclusion

Diversity of applications in complex environment:

- Meandering channels, Macro-tidal estuaries, littoral applications, ...
- Dune formation to mesoscale morphodynamics (10-100 km)
- Bed roughness predictor
 - reduces some of the uncertainty in model results
 - avoids possible unconsistency between hydrodynamics and sediment transport
- More physical processes
 - Sand grading algorithm and mixed sediments
 - Mud consolidation and flocculation

Uncertainty in the sediment transport models >>> hydrodynamics models

- → New validation test cases
- → Uncertainty analysis (automatic differentiation)

Emile Razafindrakoto

Jean-Michel Hervouet