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Bottom-up modelling sediment transport in estuaries

• Types of models
– box models
– 1-D models (time, distance)
– 2-D models (x,y, depth-averaged; time versus x-axis)
– 3-D models (x,y, time; x,y,z)
– 4-D models (x,y,z, time)

• Box models - monitor continuity of mass with simple input/output controls
– simple and effective in sensitivity analyses, can be time-stepped easily
– no hydrodynamics, spatially-averaging, poor open boundaries

• 1-D models - spatial gradients in sedimentation, concentration
– easily set up, minimum hydrodynamics, offer practical solutions
– poor open boundary conditions

• 2-D models - provides links between sedimentation and hydrodynamics
– valuable insights into fundamental processes, engineering solutions

possible
– labour intensive (99% rule), difficult to calibrate, difficult to

programme



Short term estuarine retention

Best method – direct measurements + numerical/physical simulations + “experience”
Next best method – direct measurements + numerical simulations + “experience”
Next best method – direct measurements + “experience”
Next best method – numerical simulation + “experience”
Etc, etc……

“Long term predictions will become within reach when supercomputers are more
generally available”

“fundamental problems which remain to be solved are the schematization of the
boundary conditions”

“Calibration and verification of mathematical models require a detailed set of
synoptic data. Much effort should be put in field surveys to obtain these data.” (van
Rijn, 1999)



Fundamental equations

• Sediment continuity equation (3-D):

• Mass continuity equation (3-D) (Exner):

• where D is net deposition, E is net erosion, S is suspended
sediment concentration, e is sediment porosity, b is
sediment unit weight, h is bed elevation, Ws is mean settling
rate, and U,V,W are the three components of mean flow.
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Instrumentation development to calibrate models - suspension

• acoustical
• optical
• electro-magnetic/peizo-

electric
• x-ray

• benthic landers (RALPH)

• benthic flumes (Sea Carousel)

• remote sensing tools (backscatter)

• self-contained packages (Zedhead)
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Morphological-dynamics and sediment dynamics – suspension and
bedload

(5i) Deposition (D) from cores (Pb210 or
Cs137) or sediment traps or
altimeter measures

(5ii) Erosion (E) (closed systems) or
acoustic profiling or long-term
swath bathymetry

(6) Sediment traps, geophysical surveys
of bedform migration

(1) only possible in closed system !!!
(mesocosm)

(2) bottom sampling

(3) acoustic velocity, resistivity,  CT scanning

(4) acoustic altimeter, 2-axis sector scanning
sonar, repetitive swath bathymetry
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AGE

“ The time that has elapsed since the water parcels enters an estuary”;
Bolin and Rodhe (1973).

TRANSIT TIME

“ The period between the times a particle entering and leaving an estuary ”;
Bolin and Rodhe (1973).

EXPOSURE TIME

 “ The total amount of time a particle spends in the domain”;
Monsen et al. (2002).

RESIDENCE TIME

“ The time it takes for any water particles of the sample to leave the lagoon
through its outlet to the sea ”; Dronkers and Zimmerman (1982); Prandle (1984).

“ The time required for the total mass of a conservative tracer originally within the whole or a
segment of the estuary to be reduced to a factor 1/e ”;

Sanford et al. (1992); Luketina, (1998).



Western Scheldt estuary
(volumetric changes of sand)
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Western Scheldt, Belgium – DELFT-3D

Flood and ebb dominance due to interplay of
Semi-diurnal 

Amplitude ratio: M2/M4, M2/M6

Phase shift: 2( 2 – 4), 3( 2 – 6)

Major change in inner estuary

Major changes on central estuary

Major changes in inner estuary

Changes throughout estuary



Sedimentation/erosion                                  import/export



The open boundary problem

• The open boundary offers the
greatest difficulty to measure
and to predict accurately

• note the change from importing
to exporting with time

• import and export linked to S
and more importantly to S(x)

• an estuary can change trapping
efficiency depending on S
gradient
– caused by wave resuspension

– dredging

– tidal variations

– construction, etc



Sensitivity analysis of sediment flux rates at open
boundary

• S - sediment concentration
dominates

– flux increases as S increases

• Ws - flux increases with increased
settling rate

• Ud  - deposition threshold
– flux increases as threshold

increases

• Ue - erosion threshold
– flux increases as threshold

increases

• NOTE: S dominates the signal so
should be the focus of
measurement, input and
calibration in model
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Sand trap (Lido Inlet, September 2006)

Mean concentration (mg/L)
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Lido Inlet - September, 2006 sand trap survey

Friction velocity (U*, m/s)
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Summary of results (Ws/U*) – Venice lagoon, 2006

0.230.31
Measured

from
samples

1.01.0D* = 10

0.290.38
Measured
from SSC
profiles
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InletLido Inlet
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bedload and suspended load
samples from Lido inlet.
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Fundamental issues and questions regarding estuarine retention
– short term prediction

 Estuarine filtering efficiency (F)
 where Qloss is the net export from the inlets

 while Qtotal is the total mass balance
 and Qtotsl = Qonshore + Qoffshore + Qlongshore

F
Q

Q

loss

total

= [ ]1

 Can we accurately define the transport pathways, depo-centres, and
concentration profiles of (1) fines, and (2) sands in estuaries ?

Do we understand the links between sand and fines along a transport
pathway ?

Can we predict morphodynamical evolution ?
Do we understand the link between morphodynamical changes and

hydrodynamics (waves and tidal currents) ?
What is the true relevance of biological feedbacks to estuarine evolution

What controls the trapping efficiency (F) of an
estuary ?



Fundamental issues and questions regarding estuarine retention
– long term prediction

Largely empirical based
 Can we accurately define the morphological evolution of an estuary ?

Does predicted morphological change fit with “regime” based theories ?
Does predicted evolution fit with theories of sediment dynamics ?

What are the long-term boundary conditions (sediment type, supply) ?
Hard to differentiate causality (processes)

“easier” to programme and faster to execute
Can be used for “what if” scenarios (such as SLR)

Requires expert validation and interpretation



THE NUMERICAL MODEL
• Shallow Water Finite Element Model (SHYFEM)
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•DEFINITION OF THE REMNANT FUNCTION (Takeoka,
1984 a,b)

•DEFINITION OF THE WATER RESIDENCE TIME

RESIDENCE TIME (Eulerian approach)

“ THE TIME REQUIRED FOR EACH ELEMENT OF
THE DOMAIN TO REPLACE THE MASS OF A
CONSERVATIVE TRACER, ORIGINALLY RELEASED,
WITH NEW WATER “

•TRACER [C] IN THE LAGOON = 100 %

•TIDE AND WIND ACTION DRIVES IT OUT THE BASIN

•TIME DECAY OF THE TRACER CONCENTRATION

THE TRANSPORT TIME SCALES
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A comparison of the cohesive sediment algorithm with field data collected with the Sea Carousel
in Venice lagoon (Stations 20 and 30, February 1999). The initial profile of critical erosion
threshold tce, and the time-series of applied bed shear stress t0, measured SSC, and SSC
predicted by Sedtrans05 are shown.
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A comparison between the measured
rates of sediment transport and the
rates computed according to the five
non-cohesive transport equations in
Sedtrans05. Solid dots are data from
the 1993 deployment over medium
sand (SIB93), triangles are data from
the 1982 deployment over fine sand
(SIB82), and open circles are data
from Venice (2006). The solid line
indicates perfect agreement; the
dashed lines represent the factors
0.5 and 2.



THE RETURN FLOW FACTOR (b)

FROM TIDAL PRISM METHOD:
THE AVERAGE WATER RESIDENCE TIME IS DEFINED AS:

THE TRANSPORT TIME SCALES
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•DEFINITON OF THE RFF (b)

SIMULATION I, THE MASS OF THE TRACER EXITED THE LAGOON 

CAN RETURN TO THE EMBAYMENT. Av IS COMPUTED
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SCENARIO: TIDE AND SIROCCO WIND (7 m/s)
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SCENARIO: TIDE AND SIROCCO WIND (7 m/s)
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SCENARIO: TIDE AND BORA WIND (10 m/s)
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RESIDENCE TIME VS TRANSIT TIME
TRAPPING FACTOR

2 ± 13 ± 24 ± 19 ± 44 ± 2WTT

7 ± 35 ± 32 ± 13 ± 14 ± 4WRT

SBCBNBcNBnTotalBORA +TIDE

13 ± 610 ± 511 ± 637 ± 1418 ± 9WTT

2 ± 110 ± 623 ± 638 ± 916 ± 8WRT

SBCBNBcNBnTotalSIROCCO + TIDE

THEY SEEM TO 

BE CORRELATED !

BORA + TIDE



CF = 0.09

SCENARIO: TIDE AND SIROCCO WIND (7 m/s)

13 ± 610 ± 511 ± 637 ± 1418 ± 9WTT
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SSC predicted
by Sedtrans05

SSC measured
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A comparison of the cohesive
sediment algorithm with field
data collected with the Sea
Carousel (SC) and the field
MiniFlume (MF) at different
stations in Venice lagoon,
February 1999. For each
experiment, the time-series of
SSC measured and predicted by
Sedtrans05, the standard
deviation of the proportional
difference (sPD), and the time
percentage when the difference
is less than 20% (F20%) are shown.
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Sand trap (Lido Inlet, September 2006)

Mean concentration (mg/L)
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Suspension number
Our results 1/m = -1.77

Suspension throughout
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