Cohesive Sediment Transport Models in an Idealized Estuary

Danielle Tarpley (Ph.D. Candidate)

Courtney K. Harris*, Carl Friedrichs

Department of Physical Sciences

Chris Sherwood US Geological Survey

*presenting the webinar today

CSDMS Webinar November 18, 2019

Community Sediment Transport

Modeling System

VIRGINIA INSTITUTE OF MARINE SCIENCE

- Described in Warner et al. (2008).
- Implemented in ROMS.

Active layer thickness (Harris and Wiberg, 1997).

- Versions have also been ported to SCHISM, FVCOM, and other models.
- Noncohesive sediment model.
- Treats particulate tracers as inert.

Deposition.

Create new layer if deposition > user defined thickness. Mix surface layer to be at least z_a thick. Combine bottom layer. For each sediment class

CSTMS Now Includes Flocculation and Bed Consolidation

Processes Impacting Floc Size Over a Tidal Cycle in an Idealized Estuar Model

Contraction of the second seco

¹Virginia Institute of Marine Science ²US Geological Survey, Woods Hole

Virginia Institute of Marine Science

Tarpley et al. 2019. Tidal variation in cohesive sediment distribution and sensitivity to flocculation, bed consolidation in an idealized, partially mixed estuary. *JMSE*

Flocculation shifted distribution toward coarser sediment in ETM

Question: Do floc sizes reach equilibrium in the idealized estuary?

Answer: Sometimes.

Disaggregation

ETM Near Bed (~3 cmab)

Equilibrium D

ETM @ ~90 cmab

Equilibrium D

Modeled D

Conclusions from Idealized Estuary:

- The idealized estuary model reproduced key features such as estuarine circulation the ETM, and and relied on inclusion of cohesive processes (bed consolidation and flocculation). (*Tarpley et al. 2019*)
- Flocculation had the largest impact on SSC within the ETM. It reduced the average depth-integrated suspended mass by ~50% there. (*Tarpley et al. 2019*)
- Outside of the ETM, bed consolidation had the largest impact. It decreased the average depth-integrated suspended mass by ~50%. (Tarpley et al. 2019)
- Flocculation transferred as much or more sediment mass than horizontal and vertical advection and settling in the ETM.
- The floc model produced floc sizes that were often not equilibrated with the scaling expected by C/\sqrt{G}

COAWST: Model Coupling

