

Quantifying Delta Planform Evolution Under Sea-Level Rise: Insights from Flume Experiments and Enthalpy-Based Modeling Viet M. Bui and Jorge Lorenzo-Trueba

Introduction

Motivation

- River deltas are shaped by the combined effects of sediment supply, water discharge, sea-level rise (SLR), and antecedent topography (Bedrock or Basement slope). These systems archive valuable information about environmental change and coastal dynamics.
- Yet, limited long-term data and the absence of satellite imagery before the 1960s constrain our ability to quantitatively assess how these drivers influence delta morphology over centennial to millennial timescales.
- To overcome this challenge, we integrate controlled flume experiments, image-based geometric analysis, and numerical modeling to investigate how external forcings control delta planform evolution

Goals

Quantify the influence of sediment supply, water discharge, antecedent slope, and SLR rate on the planform geometry of deltaic sedimentary prisms

Approach

Figure 1: 3D geometry diagram representation of the Enthalpy process-based model

Combining flume experiments, computer vision techniques, and two tiers of numerical modeling:

Flume Experiments: 14 delta-building experiments by Kim & Muto (2007), with different constant sediment supply values, water discharge values, and water-level change values.

Quantify Forcing Effects on Delta's Geometry Figure 3: Approach flowchart involve current and planned progress of this project

University of Florida

estimated slope value for topset and foreset of the flume's delta

L2, L3, θ applied to a simplified geometric model of the delta.

. Flux-based Estimate (Volume expected) calculated from the known, Qconstant sediment supply for each experimental run

Agreement between 2 volumes provides confidence in the values extracted from imagery and supports its use in further modeling

and theory.

Computer Vision Analysis Under sea level rise

- After validating our CV algorithm for fixed sea-level runs, we apply it to extract geometric features of deltaic deposits formed under rising sea
- Under SLR, delta morphology becomes more complex: the foreset becomes progressively starved of sediment, leading to the abandonment of the submarine delta front and landward retreat of the
- The algorithm enables tracking of this evolving geometry over time.

Enthalpy Process-based Model

moving-boundary model in development (Anderson

• Computer Vision: Expand validation using the geometric model on additional flume runs under

• Model Integration: Continue development and calibration of the enthalpy model to explore a wide range of sediment supply, water discharge, antecedent slope, and sea-level change

• Applications: Apply the modeling framework to Arctic deltas to infer past sea-level and sediment budget histories from preserved delta morphology, and ultimately couple with deeper

• J. Lorenzo-Trueba (in prep.) Enhanced Geomorphic Enthalpy Framework for Modeling Coupled Subaerial and Subaqueous Evolution of Fluvial Deltas under Sea-Level Changes • W. Anderson, J. Lorenzo–Trueba and V. Voller (2019). A geomorphic enthalpy method: Description and application to the evolution of fluvial-deltas under sea-level cycles. Computer and Geosciences. • Kim, W. and Muto, T. (2007). Autogenic response of alluvial-bedrock transition to base-level variation: Experiment

• Voller, V.R., Swenson, J.B., Kim, W., Paola, C., 2006. An enthalpy method for moving boundary problems on the earth's surface. Int. J. Numer. Methods Heat Fluid Flow. 16, 641–654.