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SIMULATION METHODOLOGY

In this study, two different numerical approaches were used to model the inundation.

2D Simulations:

— Depth-averaged shallow water equations solved using open-source package
GeoClaw with high-resolution finite volume methods and Adaptive Mesh
Refinement (AMR) techniques.

— Typical computation time: 5-6 hours with 1 computer core
« 3D Simulations:

Experiment:
= Direct measurement failed, as acoustic doppler velocimeters failed to record velocity

= Optical methods were used to estimate velocity, for example 2.2 m/s (gauge A3)

» Peak value of velocity history was computed by analyzing trajectory of
leading edge of the bore from image data (Rueben et al., 2011).

» Then the red solid line in velocity history was obtained by fitting a second
order polynomial curve from peak value to later time histories.

OpenFOAM:

= Direct measurement showed 2.85 m/s at gauge A3, shown with green solid line)
= As shown in the contours above, maximum velocity does not occur at the front edge
of the incoming bore

= Simulating the optimal method, the fluid velocity Is approximately 2.2 m/s at gauge
A3, matching experimental results
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| The figure above shows snapshots of the inundation process at 3 different moments Conclusion: Using optical methods to obtain peak and/or missing data in velocity may
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