Modeling the effects of in-stream sediment retention on rates of river
incision and strath terrace formation
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Introduction Model set up
River incision sets the pace of landscape response to perturbations through controlling the local base level. Incision is generally The building block: a 1-D finite difference model from Hancock and Anderson (2002)

thought to depend on water discharge and sediment supply, and this framework leads us to interpret the relict landscape in
terms of water and sediment supply fluctuations. However, we know that sediment does not always move smoothly through
channels. Large woody debris, landslides, and rockfall can block the channel and impede the downstream transport of sediment.

Erosion is driven by stream power and modified by the scour depth through the alluvium, which determines a probability of
bedrock exposure. Alluvium builds up and erodes depending on the sediment flux. The vertical and lateral erosion rates are
tracked to reconstruct the valley profile.
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These blockages force sediment to remain on the bed and increase the sediment retention. Here, we investigate the role of N T
sediment retention on river incision through these guiding questions: !
. . . . . . . . \
1. Can sudden changes in sediment retention result in river incision? N
2. If so, is the resulting river incision significant and persistent enough to leave a morphologic signature in dx =100 m
river profiles over 1000s to 100,000s of years? >
: : : Distance (total of 150km
3. And finally, can strath terraces result from changes to sediment retention? ( f )
1. Is a blockage seeded? 2. How long does it last? 3. What is the REF?
Whether a blockage is initiated in a given model year depends on the The persistence, or longevity of the blockage can be customized to Erosion is actually modified by the Retention Efficiency Factor, which is the ratio
probability distribution of blockages. For large wood, we assume the represent wood jams, rockfall, or other obstructions. Shown below is of blockage size to channel size. We model it simply as a rectangular blockage
100-year flood causes most blockages, but smaller and larger events wood jams, which have been dated to last over 1000 years (Abbe and and a rectangular channel cross section. The blockage size is the same for the
ks curve SRl A ran.dom e O The persistence is calculated for each node with a generated blockage, Small channels will have a higher REF than large channels, which simulates field
probability of seeding is met or not. If seeded, the blockage then gets after which the REF is calculated based on channel geometry. observations on the efficacy of woody debris on varying channel sizes (Abbe and

a persistence.

T Montgomery, 2003).
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Results Implications
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additional complexities such as wildfire, and simulate climate change more accurately. retention over time, looking for where in the profile is most susceptible to equations from Hancock and Anderson (2002).
changes, to what degree the profile changes, and how well this is preserved. The basis for this project comes from field evidence of rapid erosion following wood removal, observed
Using components such as SedDepEroder, we will incorporate the role of sediment supply more accurately by  This preliminary work indicates a high difference between rivers with no EZS??teaﬁé’éhm and others. For the field work, we thank T Hillebrand, A Pacubas, and R Schanz for their
using erosional efficiency-sediment supply relationships such as the ones shown below. Sediment retention retention and those with retention, and suggests that if one system were to '
vary in retention structure size or competency, significant changes to erosion Refe rences

rates will result.
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