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MoHvaHon	&	Research	QuesHons	
•  Deltas are flat & fertile à densely populated
•  Important for agriculture, resources, and transportation
•  Inhabitants increasingly susceptible to natural disasters
•  Humans have:

•  Decreased sediment supply (e.g. dams)
•  Altered river course (e.g. channelization, levees)

•  Relative sea-level rise rate (SLRR) increases à aggradation & 
backfilling increase (morphodynamic backwater) à avulsions 
more frequent

How do fluvial (river + floodplain) dynamics, wave 
climate, and RSLR affect delta morphology?

How do long-term delta morphodynamics depend on 
anthropogenic influences?

(e.g., land-use and climate change)

Mississippi Delta
Louisiana, USA

São Francisco 
Delta, Brazil

New	Delta	EvoluHon	Model	
•  Need to link both fluvial, deltaic, and coastal systems over multi-

avulsion and lobe-building timescales 
•  Based on couplings using the Community Surface Dynamics 

Modeling System framework (Basic Model Interface)
•  Generalized & scale invariant
•  Capable of simulating large space & time scales
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•  Cell width >> channel width
•  Steepest-descent methodology (following Jerolmack 

and Paola, 2007) 

•  Diffusion of river profile (Paola et al., 1992; Paola 2000)

•  River avulsions triggered by normalized super-
elevation ratio (SER) (Mohrig et al., 2000), 
unsuccessful if not shorter than previous path

•  Floodplain deposition = crevasse splay (after ‘failed’ 
avulsion; steepest path longer than current course)
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•  Shoreline erosion & accretion driven 
by alongshore sediment transport

•  Conserves nearshore sediment
•  Wave climate and shadowing

Ashton	and	Murray,	2006	

Preliminary	
Results	

•  Increased wave dominance (smaller 
fluvial dominance ratio R, where R < 1 is 
wave dominated [Nienhuis et al., 2015]): 
•  longer time before first avulsion
•  avulsions localized, less river shortening
•  in long term, shoreline rugosity 

surprisingly low (even with R >> 1)

•  Higher SLRR:
•  mostly does not accelerate avulsions
•  inhibits progradation; smaller lobes
•  only affects avulsion time scale in wave-

dominated case

•  Waves affect river flux variations 
with constant forcings:
•  fluxes highest with a large change in 

river length before and after avulsion
•  river dominance à more variance in 

fluxes (channel lengthens more rapidly)
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images	aUer	100	channel-filling	2mescales,	TCF	=	Qs	/	LBW	
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