Exploring delta morphodynamics with a coupled river-ocean model
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Motivation & Research Questions [ New Delta Evolution Model

Deltas are flat & fertile = densely populated
Important for agriculture, resources, and transportation
Inhabitants increasingly susceptible to natural disasters
Humans have:
* Decreased sediment supply (e.g. dams)
* Altered river course (e.g. channelization, levees)
Relative sea-level rise rate (SLRR) increases = aggradation & Mississippi Delta
backfilling increase (morphodynamic backwater) = avulsions UL

Need to link both fluvial, deltaic, and coastal systems over multi-
avulsion and lobe-building timescales

Based on couplings using the Community Surface Dynamics
Modeling System framework (Basic Model Interface)
Generalized & scale invariant

Capable of simulating large space & time scales
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Cell width >> channel width
Steepest-descent methodology (following Jerolmack I
waves _sediment

and Paola, 2007) - -
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River avulsions triggered by normalized super- TR region
elevation ratio (SER) (Mohrig et al., 2000), V7
unsuccessful if not shorter than previous path
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Floodplain deposition = crevasse splay (after ‘failed’

. i i shore
avulsion; steepest path longer than current course) river bed elevation SER >1
Ashton and Murray, 2006
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Preliminary
Results

* Increased wave dominance (smaller

SLRR* = 0.0
R=9.0]

SLRR* =0.0
R=0.3

fluvial dominance ratio R, where R < | is 4
wave dominated [Nienhuis et al., 2015]): ?
* longer time before first avulsion B - S S— S
* avulsions localized, less river shortening "= SLRR* =0.003 SLRR* = 0.003 SLRR* = 0.003 SLRR* = 0.003
* in long term, shoreline rugosity = R=9.0 R=1.7 | R=0.6 R=0.3
surprisingly low (even with R >> [) Eo
. Higher SLRR: i
* mostly does not accelerate avulsions § 2
* inhibits progradation; smaller lobes S , ) S il , . 7 . . .
* only affects avulsion time scale in wave- = SLRR* = 0.006 SLRR* = 0.006 SLRR* = 0.006 SLRR* = 0.006 |
dominated case ’ R=9.0 R=1.7 R = 0.6 R = 0.3 |

* Waves affect river flux variations
with constant forcings:
* fluxes highest with a large change in
river length before and after avulsion
* river dominance = more variance in
fluxes (channel lengthens more rapidly)
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