
Authors and Affiliations

Getachew F. Belete, getfeleke@gmail.com

Faculty of Geo-Information Science and Earth Observation 
(ITC), University of Twente, Enschede, The Netherlands

Real-time integration of models
Background

During model integration, a model can be linked to a 
number of models in several ways. Each user may have 
its own integration requirements. Integration scenarios 
identified and designed by certain group of modelers or 
developers may not satisfy integration requirements of 
the whole user community. A particular user may come 
up with a number of integration requirements even from 
time to time. Due to this there is a need for a mechanism 
in which users can select certain models and link them 
without the need for, example, additional design, coding, 
debugging. 

In computer systems real-time is the actual time in which 
a process takes place or an event occurs. Real-time 
integration is an integration method in which users can 
select and integrate models just during time of usage. 
To realize real-time integration, models should be made 
available based on some standards.

Objective

To design a framework for real-time integration of models 
through Web services.

Method

Models which are available as Web services can be used 
as basis for establishing real-time integration. 
The advantage of using Web services as standard for 
presenting models is Web service can be published, 
found, and used on the Web (Erl et al., 2009). The 
discoverability property of Web services enables users 
to fetch the available methods and variables of the Web 
services during run-time. Besides there is no requirement 
to develop static coupling to use the available 
functionalities of the Web services.

Architecture of the distributed model integration 
framework

The architecture (Figure 1) of the model integration 
framework is a layered structure developed based on 
the concept of distributed computing infrastructure. 
Basically, distributed systems consist a collection of 
subsystems which could be deployed on different 
heterogeneous platforms and they communicate each 
other by exchanging messages (Papazoglou, 2008). The 
distribution of the subsystems is transparent to the user 
in which that creates the feeling of single integrated 
system. 

Following the distributing computing paradigm the 
proposed architecture provides the benefit of:

•	Models can be developed using different programming 	
	 languages and can be deployed in different operating 	
	 systems,
•	Participating models are autonomous,
•	Models can run concurrently on different machine 		
	 using multithreading technique – which has significant 	
	 performance gain in linking model with ‘longer’ 			
	 execution time,

How it works

As shown in Figure 2, a user should come up with the 
URLs of Web service based models. Then from the URL 
and WSDL files of the web service all available methods 
and the corresponding variables of the model can be 
discovered during run-time. Input values of the variables 
can also be set using the graphical user interface. Once 
the input data is set the user can specify the mapping 
between variables of model 1 and variables of model 2, 
i.e. the user can define the semantic mediation pattern 
manually. However if an already defined semantic 
mapping exists the user can use ‘Fetch Link’ button to 
fetch existing semantic mapping.

For example, assume that we are integrating model 
M1 with model M2. Suppose M1 has function named 
function1 with input variables var1 and var2 and after 
processing, it produces the recent value of var1 as an 
output. Similarly M2 has input variables var3 and var4 and 
produce recent value of var3 as an output. From Figure 3, 
when the integrated models run for more than one time 
the outputs of M1 will be used as input for M1 and M2. 
In a similar way the output of M2 will be used as input for 
M1 and M2 . This semantic relationship is defined as:

M1: function1 => M1: function1:var1
M1: function1 => M2: function2:var4
M2: function2 => M2: function2:var3
M2: function2 => M1: function1:var2

References and Acknowledgement 

Erl, Thomas, Karmarkar, Anish, Walmsley, Priscilla, Haas, Hugo, Yalcinalp, L Umit, Liu, Kevin, . . . 
Pasley, James. (2009). Web service contract design and versioning for SOA: Prentice Hall.
Papazoglou, Michael. (2008). Web services: principles and technology: Pearson Education.

Research was supported by COMPLEX – Knowledge Based Climate Mitigation Systems for a Low 
Carbon Economy Project, EU-FP7-308601.

Figure 1. Architecture of distributed model integration framework

Figure 2. User interface for real-time linking of Web service based models

Figure 3. Simple variable mapping in integrating model M1 with model M2. M1 takes inputs var1 
and var2 and produces output O1; and M2 takes inputs var3 and var4 and produces output O2

Figure 4. Snapshot of semantic-mapping table

The user can save the semantic mapping for future 
use. It will be stored in the semantic mapping database 
(Figure 4) of the model integration framework and it will 
be accessible by any user when required. When the user 
chooses the ‘Fetch Link’ button, the system will query 
for existing semantic mappings in the database using the 
selected models and functions as criteria for searching. 
However, the user can override the semantic mapping 
fetched from the semantic database.

Conclusion

For models that take and return simple dataset types 
and that does not require complex semantic and dataset 
conversion, the proposed approach can be effectively 
used for real-time integration of models. 
For models that take and return complex datasets, e.g. 
in the form of tables, and for integration process that 
require complex semantic and dataset conversion works, 
e.g. upscaling and downscaling, further research and 
design is required. 
The use of standard variable names, e.g. CSDMS 
standard names, in developing models and wrapper Web 
services will have great contribution during user defined 
semantic mediation


