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Abstract

Biogeochemical processes on the fringes of estuaries are relatively unconstrained, especially in terms of estuary-marsh exchanges and carbon budgets. A three-dimensional biogeochemical simulation can be a valuable tool to augment the sparse observations on these exchanges and can provide insights
into the carbon fluxes associated with them. The Finite Volume Community Ocean Model (FVCOM) coupled with the Integrated Compartment Model (ICM) for water quality is being adapted to simulate the physical and biological characteristics of the Rhode River, MD, a sub-estuary of Chesapeake Bay.
Concurrent measurements of biogeochemical parameters and ongoing long-term observations are being used to inform the modeling effort. The model includes a module to simulate the drag imposed by marsh grasses that, along with the unstructured grid and the FVCOM wetting and drying treatment,
provides a realistic representation of intertidal marsh hydrodynamics. A chromophoric dissolved organic matter (CDOM) module is being developed for inclusion into the water quality model. The DOM module explicitly defines CDOM independent of non-chromophoric DOM (NCDOM) allowing a dynamic
simulation involving UV/visible light and microbial interactions in the water column and diagenesis of DOM in the sediments

Model Domain Kirkpatrick Marsh Study Site

The Kirkpatrick Marsh is an irregularly flooded intertidal mesohaline
marsh located in the Rhode River sub-estuary of Chesapeake Bay. The
marsh-estuary system has been observed to produce organic matter
fluxes that are highly variable in time and space and large in magnitude.
Understanding the processes that govern carbon dynamics in marshes is
important when considering the coastal carbon budget. FVCOM pro-
vides the capability to model the marsh flooding and drying process
while affording fine scale resolution (Chen et al., 2003). ICM coupled to a
% i sediment diagenesis model uses the FVCOM hydrodynamic solution to

Longiude model the transport of water quality variables (Kim and Khangaonkar,
Kirkpatrick Marsh Area G 2012). The offline coupled model system gives the robustness yet flexibil-

N / ity required for this highly variable ecosystem. RhodeFVM will attempt to

simulate these ephemeral carbon fluxes and provide valuable insights
into the total carbon budget of the marsh-estuary system
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Figure 4. Current velocity in the marsh area over 5 days with and without CGO;

marsh grass imposed drag. For the two month period modeled (Figure 2B)

MOdel ValidatiOn there was a ~5% mean reduction in current velocity in areas with marsh-

grass. This equates to a difference of 16090 m? of water through a grid cell
with cross sectional width of 7.9 m. Zero velocity represents a dry marsh.
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RMSE indicate the model solution is dampened relative to the real solution.
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