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Kirkpatrick Marsh Study Site
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Figure 1. The nested grid approach showing A) the Kirkpatrick Marsh study site where con-
current measurements of physical and biological variables are being taken  B) the nested 
Rhode River subgrid in the upper mid channel of Chesapeake Bay and C) the large scale 
Chesapeake Bay circulation model domain
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Figure 3.  A target diagram comparing the model predicted and observed vertical salini-
ty structure for 2 mainstem Chesapeake Bay water quality monitoring stations. The 
model error is around 50% (blue circle) of the standard deviation for the two stations 
sampled in the mainstem of the bay (see �gure 1B).  The negative values of unbiased 
RMSE indicate the model solution is dampened relative to the real solution.
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Figure 2.  A comparison of modeled and observed Sea Surface height for two NOAA tidal 
stations (www.noaa.gov) A) High pass �ltered (34 hour cut o�) from Chesapeake Bay 
Bridge Tunnel and B) Raw sea surface height from Annapolis, MD.
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Figure 6. Observational data obtained from Kirkpatrick Marsh weir from 
March 27-April 16 2015.  A) The covariance of salinity and �ourescent dis-
solved organic matter (FDOM) B) The cross-covariance of north and east 
winds observed at Tolchester Beach and salinity observations in the marsh 
weir. C) The low pass �ltered (34 hour cuto�) FDOM and salinity concen-
trations measured at the marsh weir with wind from Tolchester Beach, MD 
for comparison.  The blue dots represent days where precipitation was 
greater than 3.0 mm at Annapolis, MD.

Conclusion

CB4.1

The Kirkpatrick Marsh is an irregularly �ooded intertidal mesohaline 
marsh located in the Rhode River sub-estuary of Chesapeake Bay.  The 
marsh-estuary system has been observed to produce organic  matter 
�uxes that are highly variable in time and space and large in magnitude.  
Understanding the processes that govern carbon dynamics in marshes is 
important when considering the coastal carbon budget.  FVCOM pro-
vides the capability to model the marsh �ooding and drying process 
while a�ording �ne scale resolution (Chen et al., 2003).  ICM coupled to a 
sediment diagenesis model uses the FVCOM hydrodynamic solution to 
model the transport of water quality variables (Kim and Khangaonkar, 
2012). The o�ine coupled model system gives the robustness yet �exibil-
ity required for this highly variable ecosystem. RhodeFVM will attempt to 
simulate these ephemeral carbon �uxes and provide valuable insights 
into the total carbon budget of the marsh-estuary system
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Salinity is highly variable on subtidal scales.  Model results and   
observations suggest that wind direction and magnitude in�u-
ence the salinity intrusion and strati�cation into the shallow 
water of the Kirkpatrick Marsh area.  In estuaries, density gradi-
ents primarily due to salinity di�erences set up the mean �ow.  
Quantifying how physical factors determine the mean �ow and 
�ow variation in shallow water is necessary for accurately mod-
eling tracers as they are advected through these systems.

Future work includes continued tuning of the physical model 
and development of the colored dissolved organic matter bio-
geochemical model.  The modeling e�ort will further utilize 
comprehensive measurements in the Rhode River to better 
inform the model and characterize the dynamic processes that 
govern carbon �uxes at the terrestrial and marine interface.
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Biogeochemical Modeling Approach

Figure 7. A) Schematic of the marsh-estuary water quality exchange model   
and B) The sediment DOM module. 
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Figure 4. Current velocity in the marsh area over 5 days with and without 
marsh grass imposed drag.  For the two month period modeled (Figure 2B) 
there was a ~5% mean reduction in current velocity in areas with marsh-
grass.  This equates to a di�erence of  16090 m3 of water through a grid cell  
with  cross sectional width of 7.9 m. Zero velocity represents a dry marsh.
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Figure 5. Transects of modeled vertical salinity in the Rhode River 
(see �gure 8) A) modeled wind forcing from North American Region-
al Reanalysis (NARR) and B) constant northerly wind of the same 
magnitude as A   
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