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Motivation Quantifying Complexity

* River deltas are intricate landscapes with complex channel networks

that self-organize to deliver water, sediment, and nutrients from the We define a suite of metrics that depicts the topologic (structure of pathways) and dynamic (flux) complexity of deltas.
apex to the delta top and eventually to the coastal zone.
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Future Work

Under the premise that different morphodynamic processes
leave different signatures on topology and dynamics of deltas,

S /| the developed metrics are expected to be used for:
| | S 1. Understanding delta physical processes from form

(2) Contributing network from the apex to any node.

2. Temporal evolution

7 Irrawadd
(3) Nourishment network from any node to the shoreline. | _» v . s Acknowledgements:
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