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1. Introduction and Hypothesis 2. Hierarchical Modeling Approach

Decoupled simulations

Numerical simulations provide powerful tools for examin-
iIng the sensitivity of landscape structure to environmental
drivers and testing hypotheses about the mechanisms re-
sponsible for evolution of a particular morphology. How-
ever, model development to address fundamental geo-
morphic questions about low-gradient floodplains and
wetlands, where flow-vegetation feedbacks are strong,
has been limited. Historically, model development for
these landscapes has been restricted by limited under-
standing of the physics of flow through vegetation. Work
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lennial-timescale stability (top right), and why has this
morphology catastrophically declined in the Everglades
over the past century?
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