A Generic “Gridding Engine” for 2D Modeling of Earth-Surface Dynamics

Gregory E. Tucker', Nicole Gasparini, Erkan Istanbulluoglu?, Eric Hutton?, Dan Hobley’

"CIRES and Department of Geological Sciences, University of Colorado, Boulder
> Department of Civil and Environmental Engineering, University of Washington, Seattle
> Community Surface Dynamics Modeling System (CSDMS), University of Colorado, Boulder

Abstract

This project addresses an important limitation to scientific productivity in fields that rely on computational modeling of landscape

processes. Landscape models compute flows of mass, such as water, sediment, glacial ice, volcanic material, or landslide debris, across a

gridded terrain surface. Science and engineering applications of these models range from short-term flood forecasting to long-term

landform evolution. At present, software development behind these models is highly compartmentalized and idiosyncratic, despite the

strong similarity in core algorithms and data structures between otherwise diverse models.

We believe that progress across the range of fields that use landscape models can be transformed by introducing a component-based
approach to software development. We are engaged in a proof-of-concept study in which an existing landscape model code is adapted
and enhanced to provide a set of independent, interoperable components (written initially in C++). These include: (1) a gridding engine
to handle both regular and unstructured meshes, (2) an interface for space-time rainfall input, (3) a surface hydrology component, (4) an

erosion-deposition component, (5) a vegetation component and (6) a simulation driver. The components can communicate with each

other in one of two ways: using a simple C++ driver script, or using the Community Surface Dynamics Modeling System (CSDMS) Model

Coupling Framework.

A central element is the gridding engine, which provides the ability to rapidly instantiate and configure a 2D simulation grid. Initially, the
grid is an unstructured Delaunay/Voronoi mesh. Because the internal representation of geometry and topology is quite generic-
consisting of nodes (cells), directed edges, polygon faces, etc.—the software can be enhanced to provide other grid formats, such as a
simple raster or a quad-tree representation. The gridding engine also provides basic capabilities for finite-volume numerics, such as

calculation of scalar gradients between pairs of neighboring cells, and calculation of flux divergence within cells.

As they are developed, the components will be deployed to the surface-process community, and feedback will be collected from users,
by (1) adding the components to the CSDMS library, and (2) providing hands-on training sessions at annual meetings of the CSDMS

Terrestrial Working Group.

Our hope is that these interoperable and interchangeable components with simple, standardized interfaces, will transform the nature

and speed of progress in the landscape sciences by allowing scientist-programmers to focus on the processes of interest rather than on

the underlying software infrastructure.

Examples of different types of landscape model. (a) Computed depth-to-groundwater, from the tRibs flood forecasting model (lvanov et al., 2004). (b)
Computed patterns of soil erosion and sedimentation on agricultural fields, using the SIMWE soil erosion model (Mitas and Mitasova, 1998). (c) Model
of ice-age glacier extent over the Sierra Nevada Mountains, using the GC2D iceflow model (Kessler et al., 2006). (d) Simulation of canyon erosion and
fan-delta progradation in a region of active uplift (top) and subsidence (bottom), using the CHILD landscape evolution model (Tucker and Hancock,
2010). (e) Model of simultaneous cratering and fluvial erosion on the ancient Mars surface, with the MARSSIM model (Howard, 2007). (f) Simulation of
pyroclastic flows at Tungurahua volcano, Ecuador, using the VolcFlow model (Kelfoun et al., 2009).

VORONOI / DELAUNAY MESH GEOMETRY

Example: Building a Spatially Distributed Erosion Model

B m CHILD model: source of code for

gridding engine and other basic DRIVER
G components
P : - :
W z Z | | =
O 0 ayf) @) w =
> = i o2 o
2 Y 5 =ge g S

CJ\
_F
+
+
S
S
=
S
~
Q
b y)
A
O
<
W
=N
S
3
=
S
P

-

S

: Example of a simple Voronoi/Delaunay mesh created with
. ..’ « gridding engine (vectors = overland flow velocity at cell faces)
100 T ‘ ' ' T
: 80 .

90
70
60
50
30

Sample mesh consisting of 7 nodes (A-G), 6 triangles (T1-T6), and 24 ‘
10

e

Y Distance (m)

directed edges (a-x) (from Tucker et al., 2001). 20

0 20 40 60 80 100
X Distance (m)

EXAMPLE 1: TOPOGRAPHIC RIDGE EXAMPLE 2: OVERLAND FLOW DURING RAINSTORM
Tectonic uplift balances “diffusive” erosion Rainfall on a flat, impermeable surface creates a shallow “mound” of water

Driver Update function Class definition Update function

class OverlandFlowDiffWaveZde : public BasicModel vold OverlandFlowDiffWavelde::

int main{ int argec, char ** argv) void Diffmod2de: : { updatel)
{ update() public: I |
std::cout << "Diffmod2de\n"; { éiefggisggzgﬁwwﬂdﬂ]_ // Calculate gradlenFs along all edges
std::cout << “Diffmod2de::updatel)\n"; ' mesh_-=CalculateGradientsAlongEdges{ wsurf_, Sw_);
Diffmod2de diffusion_model; f/ Overridden BMI methods
std::string input_file_name; // Calculate gradients along all edges wvoid inmitialize(std::string config_file); S/ Calculate upstream depth wvalues for edges

void update(); mesh_-=AssignUpstreamCellValuesToEdges({ depth_, wsurf_, depth_at_face_);:
void update_until{ double t };

void finalize();

mesh_-=CalculateGradientsAlongEdges{ eta_, S_):
S5 5et the name of the input Tile

std::cout =< " setting input file name\n"; /{ Calculate fluxes along edges double get_current_time{) { return current_time ; } £ Ca'l.cu'!.ate v;lnci;y and discharge along edges
if{ arge=1) for{ unsigned j=@; j<nedges_; j++) for{ unsigned j=8; j<nedges_; j++)

j t_file_name = argv[1l]; 1 . // Other methods _ {

input_ = ' qs'—[J] = —kd_ * 5—[]] ’ vold WriteQutputChildFormat({ double time }; : : : : :
else ' S/ Calculate wvelocity magnitude using the Manning eguation

input_file_name = "testdiffmod.in"; // Calculate flux divergence protected: v_[j]l = (1.@/n_)*pow(depth_at_face_[j], ©.6667)*sqrt{ fabs{ Sw_[j]));

mesh_->CalculateFluxDivergenceAtCells{ qs_, delas_); vector<double> eta_; // height ot land surface, m , , , _
// Open the input file - g q=_» 4=_ i vector<double> wsurf_; // water surface height, m S/ S5et the sign of the wvelocity according to the sign of the
std::cout << " opening input file\n";)))) vector<doubles= depth_; // watn_ar depth in cell, m // water surface (downhill) slope
- _ _ ! : ' /f Loop over active (inmterior) cells, calculating rates and changes vector<double> depth_at_face_; // water depth at cell face (edge), m
tInputFile infile{ input_file_name.c_str{) }; for{ unsigned i=@; i<n_active_nodes_; i++) vector<double> delq_; // flow divergence, m/s v_[i]l = copysign{ v_[jl, -Sw_[jl };
I - - - vector=doubles Sw_; // water-surface gradient, -
i i i o4 _ . L 1. vector=double> w_; ff velocity, m/s J/ Calculate discharge = velocity x depth
fxt‘dl.:%nd Eu:qhﬁw nf;n_&n, and tn“'.:rhat format, to write output unsigned k = active_cell_indices_[i]; vector=double> g_; /f discharge per unit width, m2/s o [i] = v_[j]+depth gt face [j].'.'-" p
S0 2 S D ~ Feadlng varsin-, assert{ k<nnodes_); vector=int= cell_ids_; // cell ID numbers - - == - '
double write_interval = infile.ReadDouble("OPINTRVL"); eta_[k] += (b_ - delgs_[k]) = dt_; vector<int> active_cell_indices_; // indices of active (interior) cells }
double next _write = write_interval; } - - - - double n_; // roughness coefficient (Manning's n)
= = } double g_; ff gravitatiomal acceleration, m/s2 S/ Calculate Tlux divergence
// Read the run duration from the input file gg:g{; ;z”?ff—; . ti;g_:gsc;ﬂ;p;E“pltatlD” (runoff), m/s mesh_-»CalculateFluxDivergenceAtCells(q_, delg_);
double runtime = infile.ReadDouble{ "RUNTIME"); double current_dt_; // current time-step size, s _ _ _ _
double current_time_; // current time in simulation, s /f Loop over active (interior) cells, calculating rates and changes

// Initialize the model ofstream depth_output_file_; J/f output file (TODO: in future, use a : for{ unsigned i=@; i<n_active_nodes_; i++)

generic output class?) - {
ofstream water_surface_output_Tile_; : D - -
ofstream velocity_output_file_;
ofstream discharge_output_Tile_;

std::cout =< " about to initializedwn";
diffusion_model.initialize(input_file_name);

unsigned k = active_cell_indices_[i];

depth_[k] += (runoff_ - delg_[k]) = dt_;
// Run the model wiurf_[k] = eta_[k] + depth_[k];
double curremt_time = 8.8;

while { current_time < runtime)

}
500

{ E
double run_to_time = { next_write <« runtime) ? next_writ =
diffusion_model.update_until{ run_to_time); [=)
current_time = run_to_time; _“C’ 0.01 E
next_write += write_interwval; o P
diffusion_model.WriteQutputChildFormat{ current_time); % 0.005
} ‘€ ,
> 0 120
ff Clean up — 0
diffusion_model.finalize(); 4%
50 :
std::cout << "Done with main\n" << std::flush; 0 Distance (m) =
} 0

Distance (m) 150 -20

