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To simulate flood wave propagation over arbitrary topography, such 
as alluvial fan, depth-averaged Navier-Stokes equation can be 
solved accurately using the Godunov-type finite volume method 
(FVM) with an approximate Riemann solver. Traditionally, the body-
fitted mesh is generated by using the unstructured mesh (Zhao, 
Shen et al. 1994; Begnudelli and Sanders 2006; Murillo, García-
Navarro et al. 2009). An alternative approach is to use the Cartesian 
cut-cell method (Causon, Ingram et al. 2000; Zhou, Causon et al. 
2004; Kim and Cho 2011). In general, the boundaries of a domain 
are cut out of a background uniform rectangular mesh and the cells 
of the domain are divided into rectangular internal cells and irregular 
boundary cells. Resulting cells can fluid cells, solid cells and cut 
cells. The cut cells can be further categorized into 16 sub-types 
depending upon the slope of the cutting edge (Causon et al. 2000).
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Fig.1. Flash flood Flow in Arizona, July 2006 Fig. 2. Classification of cells in Cartesian Cut-cell Method

The MUSCL-Hancock finite volume method incorporated with the surface gradient 
method (Zhou et al., 2001) is adopted. Two steps in every time step: the predictor step 
and the corrector step.

where Lm is the cell side vector defined as the length of side m multiplied by the outward 
normal vector; M is the number of cell sides; F(Um) is the flux vector and is calculated at 
each side m by the following linear reconstruction function:

where rm is the normal distance vector from the cell center to side m.  A limited gradient 
vector is used to avoid spurious oscillations in the linear reconstruction process. The 
corrector step is a conservative step over a full time step:

where  F(UL,UR) is the flux vector calculate by solving a local Riemann problem at each 
side of the cell;  Um (L and R) are the conservative variables at the left and right sides of 
cell interface. The HLL approximate Riemann solver (Harten et al., 1983) is used to solve 
the local Riemann problem with dry bed modification from Fraccarollo and Toro (1995). 
The flux at the interface is defined as:

Case 3: Unsteady flood flow through Huron Island Reach, 
Mississippi River.

The governing equations of shallow-water flow,
the shallow water equation (SWE), are reduced
from Navier-Stokes equations with the
hydrostatic assumption.

in which

where h=η - zb is flow depth, g is gravity 
acceleration; u and v are the velocity 
components in x and y direction; V is the 
velocity vector defined as                 

in which

S is the source term, which consists of gravity 
force and bed surface friction,

The Integral form of shallow water equation,

where n is the outward normal vector; A is the 
area enclosed by the surface S.  The 
governing equation is hyperbolic differential 
equation, which exhibits discontinuity.  
Numerical scheme needs to be compatible with 
discontinuous solution.

D is the diffusion term, including both the 
kinematic viscosity and turbulent viscosity.

In which 

RESULTS

Case 1: Triangular Sill (Soares-Frazao, 2007)

Case 2: Isolated obstacle: Soares-Frazao and Zech, 2007

CONCLUSIONS

WET AND DRY METHOD
For the dry bed problem, according to Fraccarollo and 
Toro (1995), the waves are calculated by the following 
equations, for the right dry bed:

For the left side dry bed:

where φ=g(η-zb).

In the case when the bed elevation of the dry cell is 
higher than the surface elevation of its neighboring 
wet cell, the HLL Riemann solver would lose its 
stability. So it’s necessary to track the wet-dry front 
and cut the dry cell out of the computational 
domain.

• The position of the 
wet-dry front is 
interpolated linearly 
using bed elevation:

• Other dry/wet cells 
need to be cut using 
under reflection/non-
reflection condition.

• Cartesian cut-cell method does not require a mesh 
generator.

• Cartesian grids are uniform that can save computational 
cost comparing to irregular skewed meshes.

• Using Cartesian cut-cell method can identify wet-dry 
front automatically at runtime.

• The MUSCL-Hancock finite volume method is efficient in 
Cartesian Cut-cell method.

• Because of simple grid, parallel computing can be easily 
implemented.
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