Results of the US I00S Testbed for Comparison of
Hydrodynamic and Hypoxia Models of Chesapeake
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David Green (NOAA-NWS) — Transition to operations at NWS
Lyon Lanerole, Rich Patchen, Frank Aikman (NOAA-CSDL) — Transition to operations at CSDL; CBOFS2
Lewis Linker (EPA), Carl Cerco (USACE) — Transition to operations at EPA; CH3D, CE-ICM
Doug Wilson (NOAA-NCBO) — Integration w/observing systems at NCBO/I00S

Non-federal partners

* Marjorie Friedrichs, Aaron Bever (VIMS) — Metric development and model skill assessment
Ming Li, Yun Li (UMCES) — UMCES-ROMS hydrodynamic model

Wen Long, Raleigh Hood (UMCES) — ChesROMS with NPZD water quality model

Scott Peckham (UC-Boulder) — Running multiple ROMS models on a single HPC cluster
Malcolm Scully (ODU) — ChesROMS with 1 term oxygen respiration model

Kevin Sellner (CRC) — Academic-agency liason; facilitator for model comparison

Jian Shen (VIMS) — SELFE, FVCOM, EFDC models

John Wilkin, Julia Levin (Rutgers) — ROMS-Espresso + 7 other MAB hydrodynamic models
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Methods (i) Models: 5 Hydrodynamic Models (so far)

(1) CH3D
(L. Linker/C. Cerco, (2) EFDC
" EPA/USACE CBP) (J. Shen, VIMS)

(4) UMCES ROMS
(M. LitY. Li, UMCES)

(3) ChesROMS
(R. Hood/W. Long, UMCES)

(& J. Wiggert/J). Xu,
USM/NOAA-CSDL)

(5) CBOFS2
(L. Lanerolle, NOAA-CSDL)
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Methods (i) Models (cont.): 5 Dissolved Oxygen Models (so far)

o ICM: CBP model; complex biology
o bgc: NPZD-type biogeochemical model
o legn: Simple one equation respiration (includes SOD)
o 1term-DD: depth-dependent net respiration

(not a function of x, y, temperature, nutrients...)
o 1term: Constant net respiration

Methods (i) Models (cont.): 8 Multiple combinations (so far)

o CH3D + ICM

o EFDC + legn, 1term

o CBOFS2 + 1term, 1term+DD

o ChesROMS + 1term, 1term+DD, bgc

(3)

Methods (ii) observations: S and DO from Up to 40 CBP station locations

Data set for model skill assessment: B X . 5 59
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(http://earthobservatory.nasa.gov/Features/ChesapeakeBay)
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Methods (iii) Skill Metrics: Target diagram
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(modified from M. Friedrichs)
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Results (i): Hydrodynamic Model Comparison
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Inner circle in (a) & (b) = error
from CH3D model

- All models do very well
hind-casting temperature.

unbiased unbiased - All do well hind-casting
RMSD RMSD bottom salinity with CH3D
' [°C] ‘ | [psu] and EFDC doing best.
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© ChesROMS for all the models.
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(c) Stratification 1.5~ o bias [m] strength and variability of
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pycnocline and EFDC doing slightly
better.
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[psu/m] RMSD slightly better than others
: ' ' I [m] for pycnocline depth, with
N 1.5 6 CH3D too deep, and the
others too shallow.
- All underestimate
variability of pycnocline
depth.
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Results (i) Hydrodynamics: Temporal variability of stratification at 40 stations
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Results (i) Hydrodynamics (cont.): Sensitivity of stratification at pycnocline
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Stratification at pycnocline is not sensitive to horizontal grid resolution or changes
in atmospheric forcing. (Stratification is still always underestimated)
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Results (ii): Dissolved Oxygen Model Comparison
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5-model
average

- Simple models reproduce dissolved oxygen (DO) and hypoxic volume
about as well as more complex models.

- All models reproduce DO better than they reproduce stratification.

- A five-model average does better than any one model alone.

(from A. Bever, M. Friedrichs)
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Results (ii) Dissolved Oxygen: Top-to-Bottom AS and Bottom DO in Central Chesapeake Bay
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- All models reproduce DO better than they reproduce stratification.

- So if stratification is not controlling DO, what is?

(by M. Scully)

Results (ii) (cont.): Effect of Physical Forcing on Dissolved Oxygen
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Seasonal changes in hypoxia are not a function of seasonal changes in freshwater.
Instead, seasonal hypoxia may be largely due to seasonal changes in wind.

(10) (by M. Scully)
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SUMMARY & CONCLUSIONS

Available models generally have similar skill in terms of hydrodynamic quantities
All the models underestimate strength and variability of salinity stratification.

No significant improvement in hydrodynamic model skill due to refinements in:

— Horizontal/vertical resolution, atmospheric forcing, freshwater input, ocean forcing.

In terms of DO/hypoxia, simple constant net respiration rate models reproduce
seasonal cycle about as well as complex models.

Models reproduce the seasonal DO/hypoxia better than seasonal stratification.

Seasonal cycle in DO/hypoxia is due more to wind speed and direction than to
seasonal cycle in freshwater input, stratification, nutrient input or respiration.

— Note: This does not mean than inter-annual variation in nutrient input/respiration is unimportant.

Averaging output from multiple models provides better hypoxia hindcast than
relying on any individual model alone.




