High-Performance Component-
Based Scientific Software
Engineering

Boyana Norris
Argonne National Laboratory

http://www.mcs.anl.gov/~norris

CSDMS Meeting: “Modeling for Environmental Change”
October 15, 2010

Acknowledgments

0 Common Component Architecture Forum
a CSDMS
a DOE Office of Science

What are components?

0 No universally accepted definition in CS; some features:

0 A unit of software development/deployment/reuse
— i.e., has interesting functionality
— ldeally, functionality someone else might be able to (re)use
— Can be developed independently of other components

0O Interacts with the outside world only through well-defined
interfaces
— Implementation is opaque to the outside world

0 Requires a managed execution environment; can be
composed with other components dynamically
— “Plug and play” model to build applications
— Composition based on interfaces

What is a component architecture?

Q A set of standards that allows:

— Multiple groups to write units of software (components)...

— And have confidence that their components will work with other
components written in the same architecture

Q These standards define...

— The rights and responsibilities of a component
— How components express their interfaces

— The environment in which components are composed to form an
application and executed (framework)

— The rights and responsibilities of the framework

Object-oriented vs
component-oriented development

0 Components can be implemented using OO techniques

0 Component-oriented development can be viewed as
augmenting OOD with certain policies, e.g., require that
certain abstract interfaces be implemented

0 Components, once compiled, may require a special execution
environment

0 COD focuses on higher levels of abstraction, not particular to
a specific OO language

— abstract (common) interfaces
— dynamic composability
— language interoperability

0 Can convert from OO to CO specific to a given framework,
possibly with some level of automation

What is the CCA?

a

Component-based software engineering has been
developed in other areas of computing

— Especially business and internet

— Examples: CORBA Component Model, COM, Enterprise JavaBeans

Many of the needs are similar to those in HPC scientific
computing but scientific computing imposes special
requirements not common elsewhere

CCA is a component environment specially designed to meet
the needs of HPC scientific computing

— The CCA Forum (open to all) was formed in 1999

— Has been supported through multiple DOE projects since 2000

Special needs of scientific HPC

O Support for legacy software
— How much change required for component environment?
0 Performance is important
— What overheads are imposed by the component environment?

0 Both parallel and distributed computing are important

— What approaches does the component model support?
— What constraints are imposed?

— What are the performance costs?
0 Support for languages, data types, and platforms
— Fortran?
— Complex numbers? Arrays? (as first-class objects)
— Is it available on my parallel computer?

Some examples

0 Different component granularity
QO Few vs many interfaces

CSDMS interfaces

Initial Standalone
Model

Initialize

Run

Finalize

Get Value

Set Value

'

¥

Another
Component

Another
Component

0 2009 CSDMS Annual Report

CSDMS Framework

CSDMS Component Library

CCA/CSDMS Services €.

T
OpenM'_Ser"iCes Cona™ " ? - Python DDBDQJ
Il ¥ 00

CCA/CSDMS Framework

CSDMS
Driver

Provide Use
Port Port

OpenMI Interface Standards

10

CSDMS Integrated Component Simulation

fEOAC b =

o i =
v s Cmesitr B
bt o) on
e =
i isann e
i, i b
s ety S—
i SuomeOuavs e —
i Sooreptoes s

Q_peak: 153472437264 [mA3/s)
_peak: 60.1 (min]
u_peak: 1.78832675441 [m/s)

6_ 11

DB: sph.h5part

SPH Groundwater oy

Max: 2000
Min: 1.000

Contour
Var:c

Modeling Framework =

002500
—002000
Max: 004656
Min:-0.0007155

Contour
Var: vel

SPHDriver0

1000
—=&— Total Speedup
—&— Speedup in Force
—— Perfect Speedup
100
o
2
k=]
3
RemapPricl0 =
w
10
1 1 1

Q Bruce Palmer, PNNL 1 w0

Number of Processors

S 12

SWIM: Integrated Plasma Simulation
Framework

A flexible, extensible computational framework
capable of coupling state-of-the-art models for
energy and particle sources, transport, and stability

for tokamak core plasma. www.cswim.org -Don
Batchelor et al.

e CCA implementation

e File-based communication between
components

SWIM: Integrated Plasma Simulation
Framework Component Interface

g
from component import Component

class HelloDriver Component) :

def init(self, timeStamp=0.0):
return

def step(self, timeStamp=0.0):
return

def finalize(self, timeStamp=0.0):
return

def init (self, services, config):
Component. init (self, services, config)
print 'Created %s' % (self. class)

14

Accelerator Simulations

X Common Component Architecture

Q Common Component Architecture: Untitled_0.bld (changed)

File View CCA Info
Actions

Run/ 'Remove|Remove All| Open.. Save Save As..

Load component class...

Append component path...

Palette Arena
ccafe6. MPIComponent
SynergiaCCA. electronFlock

DSynergiaCCA. gourmet

TxSynergiaCCA. gourme[Pru_,“r

TxSynergiaCCA. synergiaDriver
ISynergiaCCA. txegenelecC

DéynergiaCCA. txegenelecProxy

DxSynergiaCCA. tXionpack txionpackCd

SynergiaCCA. tXionpackCXX tiegenelecC

Measurement

DéSynergiaCCA. tXionpackProxy

synergiaDriver0
TauPerformance. TauMeasurement

- gourmet }

[
\
{
\
|
{
\

gourmetlise H ‘mmm
MeasurementPort ™
gourmetProxy0

txionpackUse . | _

wionpackCXX0

MeasurementPort =h

! txegenelecCO

txionpackProxy0

txegeneleclse

MeasurementPort

xegenelecProxy0

TauMeasurement0

A Source: lech-X Corporation

15

Benefits of Component-Based Software
Development

0 Software evolution and maintainability

0 Encourage (force?) people to reach agreements in
order to define interfaces

0 Enable independent development
0 Plug-and-play application composition

16

The Dark Side

0 Identifying components and designing clean
interfaces is harder than writing less modular code

0 Components require extra code

0 Multiple abstraction layers add extra runtime
overhead

0 Complications of interoperability

— Different grids, boundary conditions, etc.

On the Bright Side

0 Better code reuse including outside a project

— Less software to develop from scratch
— Ability to leverage expert knowledge/division of labor

0 Huge potential for usability-enhancing automation

— Development processes (software creation, modification,
builds, testing)

— Code generation
— Link- and run-time optimizations

0 Community-specific frameworks that make
component development highly productive

0 Language interoperability

18

Language interoperability with Babel

O Programming language-neutral interface descriptions

0 Native support for basic scientific data types
— Complex numbers
— Multi-dimensional, multi-strided arrays

0 Automatic object-oriented wrapper generation

f77 / f77 \

f90 C f90

C
C++ Python Python

C++

Java Java

19

Babel Generates object-oriented language
interoperability middleware

: Stubs

|
IORs
_ Bab?' libcomp.so

comp.sidl Compiler Skeletons :

_ : Implementations |
user creates Bab_el
Runtime

Write your SIDL file to define public methods

Generate server side in your native language using Babel
Edit Implementations as appropriate

Compile and link into library/DLL

1.
2.
3.
4.

IOR = Intermediate Object Representation SIDL = Scientific Interface Definition Language

20

Clients in any supported language can access
components in any other language

¥ ¥ ¥ ¥ ¥ 4
C C++ F77 F90 Java Python
Stubs Stubs Stubs Stubs Stubs Stubs

S

IORs

!

Skeletons

§

Implementations

!

Component
(any supported language)

IOR = Intermediate Object Representation 2

An example of usability improvement:
Managing projects with Bocca

Q The interoperability, connectivity, and modularity of
components is independent of their function.

0 Bocca creates and manages a graph representation
of interface and component dependencies, which is
used to
— Generate the build system
— Generate the “glue” code for language interoperability
— Generate component metadata
— Generate tests

Bocca command-line example

Q Create some components with ports:

X
: , g & &

$ bocca create project myProject &\\Q O P

$ cd myProject Q°<\ Q°<\ C)o<Q °

$ bocca create port myPort J/ J/ J/ <

$ bocca create component --uses=myPort@aPort --go=myGoPort Component1
$ bocca create component --provides=myPort@aPort Component2

0 From the CCA perspective these are fully functional
components (no implementation however):

Q Common Component Architecture: Untitled_0.bld (changed)
File View CCA Info
Actions

]Runl ’RemoveHRemove AII\ {Open...HSaveHSa\re As...‘ |Load component class...HAppend component path...
Palette

Componentl

/| Arena

Component2

Componentl

Component2

Adapt component applications

0 Leverage the fact that components are plug-and-play

0 Automate the configuration and runtime adaptation
of high-performance component applications,
through the so called Computational Quality of
Service (CQoS) infrastructure

— Instrumentation of component interfaces
— Performance data gathering

— Performance analysis

— Adaptive algorithm support

24

Major events in a component’s lifetime

| |

Potential for [Instantiation
automation and

adaptivity [v } <C>

Configuration

4

[Execution

\

[Destruction]

Port Connections
Port Configuration)

o 25

Example: Multimethod linear solver components
in nonlinear PDE solution

Example adaptive strategies

Physics]]:‘—[Nonllnear]] Linear based on:
Solver Solver = CFL number
= Rate of nonlinear convergence
_[Mesh . Knovyn phase§
= Matrix properties

Physics %—'—: Nonlinearp

Solver
Adaptive: | Linear
Mesh — = m
B Heuristic [| Solver A
] | Linear
L Performance | || Solver B
— | Checkpointing [Monitor [
1 Linear
|| Solver C

° 26

\.__________________________________
Example 1: 2D Driven Cavitv Flow’

Comparison of Base and Adaptive Linear Solvers

10 ' ' ' ' '
oo —— Adaptive—ILU(k)
s o ILU(D)
10° | g tU® e —
s e - ILU(2)
o |LU(3)

—
o
L

|
o

Log(10) of Nonlinear Residual Norm
o

—
S
o
T

1 ? 1 ‘ 1
0 50 100 150 200 250 300 350
CumulativeTime (sec)

10 '

0 Driven cavity flow, which combines lid-driven flow and buoyancy-driven flow in a two-
dimensional rectangular cavity. We use a velocity=vorticity formulation of the Navier-Stokes and
energy equations, discretized on a uniform Cartesian mesh.

'T. S. Coffey, C.T. Kelley, and D.E. Keyes. Pseudo-transient continuation and differential algebraic
equations. SIAM J. Sci. Comp, 25:553-569, 2003.
° —

Example 2: PETSc-FUN3D

Q

3D compressible Euler (used in this work;
also supports incompressible Navier-
Stokes)

Fully implicit, steady-state

Developed by D. Kaushik et al. (ANL)

Based on FUN3D (developed by W.K.
Anderson, NASA Langley)

— Tetrahedral, vertex-centered
unstructured mesh

— Discretization: 15t or 2" order Roe for
convection and Galerkin for diffusion

Pseudo-transient continuation

— backward Euler for nonlinear
continuation toward steady-state
solution

— Switched Evolution/relaxation (SER)
approach of Van Leer and Mulder

Newton-Krylov nonlinear solver

— Matrix-Free (2" order FD)

- Preconditioner (1st order analytical)
Won Gordon Bell prize at SC99;
ongoing enhancements and
performance tuning

28

Adaptive linear solver components

Time per Nonlinear lteration (4 Processors)

70 T T T T T T T T
f'\._./._._-
|
60| i . i
|
-' ¢
50+ :." |
:I
3 1 i
S 40t -1
@ §
2 | ey FGMRES
o 30k FGMRES xS ILU(1)
g Ho N .~ > FGMRES
= T ILU(0)
20 R _omd® e —
i A fgmres—ilui
' éégs — fgmres—ilu0
101 ILU(0) - — — gmres-sor |-
----- bcgs—ilu0
GMRES/SOR x adapt
O ' L 1 1

0 10 20 30 40 50 60 70 80 90
Nonlinear lterations

29

Linear solution time p

Linear Solution Time per Nonlinear Iteration

20

Example 2: FUN3D

er nonlinear iteration

\
bcgslo {
fgmresl1

fgmresl0

gmressor

average
adapt1
adapt2

Nonlinear lteration Number

Adaptl: (1) 5t order: BCGS / BJacobi with ILU(0)
(25) 15t order: FGMRES(30) / BJacobi with ILU(0)
(28) 2" order: BCGS / Bjacobi with ILU(0)
(66) 2" order: FGMRES(30) / BJacobi with ILU(0)
(80) 2" order: FGMRES(30) / BJacobi with ILU(1)

100

3000

2500

2000

1500

1000

500

Cumulative time (seconds)

\ J
\ %(_/
base methods adaptive

Adapt2: (1) 1t order: GMRES(30) / Bjacobi with SOR
(2) 1%t order: BCGS / BJacobi with ILU(0)
(25) 1%t order: FGMRES(30) / BJacobi with ILU(0)
(28) 2" order: BCGS / Bjacobi with ILU(0)
(66) 2" order: FGMRES(30) / BJacobi with ILU(0)
(80) 2" order: FGMRES(30) / BJacobi with ILU(1)

30

Example 2: FUN3D (cont.)

0O Comparison of traditional fixed linear solvers and an adaptive scheme, which uses a different
preconditioner during each of the phases of the pseudo-transient Newton-Krylov algorithm
O MCS Jazz cluster (2.4 GHz Pentium Xeon with 1 or 2 GB RAM), 4 nodes

Convergence rates of base and adaptive methods Convergence rates of base and adaptive methods

-2

10 T T T T T T T T T 10

begslo \
-6 [-
10 fgmresl1 - 10° L

fgmreslo

gmressor
adapt1
adapt2

begslo
fgmresl1
-8 fgmreslo
— gmressor
adapt1
adapt2

Nonlinear Residual Norm
5
T
L

Nonlinear Residual Norm
B
T

°,
T
1

10' 1 Il 1 1 Il 1 Il 1 1 .
0 10 20 30 40 50 60 70 80 90 100 10

L L L L L
0 500 1000 1500 2000 2500 3000

Nonlinear Iterations
Nonlinear iterations Cumulative time (seconds)
Adaptl: (1) 15t order: BCGS / BJacobi with ILU(0) Adapt2: (1) 15t order: GMRES(30) / Bjacobi with SOR
(25) 15t order: FGMRES(30) / BJacobi with ILU(0) (2) 15t order: BCGS / BJacobi with ILU(0)
(28) 2" order: BCGS / Bjacobi with ILU(0) (25) 15t order: FGMRES(30) / BJacobi with ILU(0)
(66) 2 order: FGMRES(30) / BJacobi with ILU(0) (28) 2 order: BCGS / Bjacobi with ILU(0)
(80) 2" order: FGMRES(30) / BJacobi with ILU(1) (66) 2" order: FGMRES(30) / BJacobi with ILU(0)

(80) 2 order: FGMRES(30) / BJacobi with ILU(1)
0 Adaptive methods provide reliable and robust solution and reduced the number of nonlinear
iterations and overall time to solution.

31

Example 3: Radiation Transport

Att =1 I

Based on Mousseau, Knoll, and Rider (LA-UR-99-4230)
Govern the evolution of photon radiation in an optically thick medium
Derived by integrating over all energy frequencies, assuming

— lIsotropy (angle dependence averaged out)

— Small mean-free photon paths

O Very important in the simulation of forest fires, inertial confinement fusion (
http://fusion.gat.com/icf), astrophysical phenomena

(R i

32

N
Example 3: Radiation Transport

——g30sor
10" F |—g30ilu1 -
[[—f30ilu1]
—bcgsilu1
——adapt

-
o
o

Simulation Time per Time Step

BCGS/ILU BCGS/ILU
(1) FGMRES(30)/ (1)

GMRES(30)/ ILU()

SOR

0 100 200 300 400 500 600 700 800 900 1000
Time Step

33

Future directions

0 Many possibilities for usability enhancements
O More automation

— Component creation from existing code
— CQoS

0 Community contributions

34

Summary

0 If defined and used properly, components are a
powerful software development approach that enable
diverse codes and developers collaborate effectively

— 50% social interaction + 30% discipline + 20% code
development

35

