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CARBONATE FOCUSED RESEARCH GROUP

Group aim:
* To identify and address grand challenges for fundamental
research on ancient and recent carbonate systems

To be achieved by:

* Creation of next generation of numerical carbonate process
models under the umbrella of the CSDMS initiative

e Creation of supporting carbonate systems databases

Assuming that:

* Open-source numerical models and associated quantitative
datasets can be state-of-the-art repositories for our knowledge of
how carbonate systems work

 Models can be useful experimental tools applied to develop and
enhance carbonate knowledge.
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e |[ssues: platforms & prediction, complexity and heterogeneity

— Platform types and facies prediction



PLATFORM TYPE & FACIES PREDICTION

ety (o e moms* - Standard paradigm: carbonate factory type, represented by
K P — carbonate production profile , controls platform architecture
I

* Most predictions of facies and sequence strat hinge on this
But is it true?
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e |[ssues: platforms & prediction, complexity and heterogeneity

— Origins of heterogeneity in carbonates



ORIGINS OF HETEROGENEITY
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ORIGINS OF HETEROGENEITY

R.GRP

e Vertical stacking in strata also
shows significant heterogeneity

600m s

e Many carbonates strata exhibit
exponential thickness
frequency distributions

PO i e Which means lots more thin
e beds than thick beds

Rockrest Formation

o s e e What does this mean in terms
_ 100 . of depositional processes?
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e |[ssues: platforms & prediction, complexity and heterogeneity

— Other issues...



OTHER ISSUES

* Ocean acidification
e Shoreline change on island nations

* Reefs, shallow and deep, and their change

in response to past and future climate
change

e Tsunami records



* Review of current models

— Depositional models



DEPOSITIONAL MODELS: DIONISOS

Summary

Spatial dimensions: 3D

Process dimensions: 1-2D

'l""f‘fn’f‘ ¥ :..,lf:' SFaIe: Whole plat.'form and mqre
Huu YRR WK Lithologies: Multiple, user-defined

* i - linked to production curves

Transport is diffusional so ability to

make fine-scale heterogeneity is

rather limited

USP: Large scale, very flexible and
often very fast to run

18

Refs:
Bassant and Harris, 2008
Williams, 2010, unpublished PhD thesis
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DEPOSITIONAL MODELS: CYCLOPATH

Summary

Spatial dimensions: 3D

Process dimensions: 1-2D
production, 2D transport

Scale : Platform architecture &
platform interior

Lithology: very basic, water-depth
classification only

Heterogeneity: some, but limited
by poor lithology representation

USP: consideration of autocyclic
processes, detailed statistical
analysis of results

Refs:

Burgess et al 2001,
Burgess, 2001,

Barnet et al 2002,
Burgess and Wright 2003,
Burgess and Emery 2004
Burgess, 2006



DEPOSITIONAL MODELS: CARB3D+

Summary

Spatial dimensions: 3D
Process dimensions: 1-2D?
Scale: Whole platform
Lithologies: Multiple, realistic
Heterogeneity — definitely, but
mostly externally forced? And
W possible issues with numerical
N artefacts?

= USP: good wave and current
model, plus link to diagenetic
processes

Wind and Current Direction

Refs:
Peterson et al 2006
Peterson et al 2008
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* Review of current models

— Diagenetic models



DIAGENETIC MODELS: CARB 3D+

Cross—Section: Facies

Primary

facies Facies Key: Aft Summary
crainstones  SPatial dimensions: 3D
. Packestones  Process dimensions: 1-2D?
Wockestores Geale: Whole platform
Mudstones

— 1. Lithologies: Multiple, realistic

Facies Type Diagenetic model: hybrid
00 Dstarce, mos 1o 1s 20 25 30 parametric
o] |, Cross—Segtion: Secondagy Hydraulic Cqnductivity (m/day) .
— E— Hydraulic
L ___ conductivity Refs:

Peterson et al 2006
Peterson et al 2008

Height {m)

Reactant
v, P
':90 Q, % o,
%, %, Ky %,
% % % %
L L T | oo ‘7,;
0.0 Distance, km 0.5 1.0 1.5 2.0 25 30 ?90
—Section: % Fabric Selectjve Porosity ’),,‘0 % %
Porosity

o StabilizatE n
L %’/‘é Cementation
. 13}

% Porosity Key: 3,

2 %,

o o,,). Secondary
4Q0.0-45.Q %o \ Dolomitization
45.0-50.Q

50.0-55.0
—20 %
- 55.0-65.0

- 65.0-100.0
0 |||||.

0.0 Distance, km 0.5 1.0 15 20 25 % Fabric Selective %Ié Excluded on thermodynamic grounds

Height {m)

Dissolution e




C-FRG '
Reaction-transport modeling of bed-scale dolomitization to
assess pattern formation using Sym.8 simulator
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no flux boundary
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DIAGENETIC MODELS: RT MODEL OF SO BEDS

Summary

Spatial dimensions: 2D
Process dimensions: 1-2D?
Scale: Small-scale bed stacking
Lithologies: Realistic depiction
of bed-scale dolomitization

Refs:
Budd, 2010, pers. comm.



* New modelling directions

— Cellular automata



Lithofacies mosaic on

a map of Florida Bay

Lithofacies mosaicin a
CA model

= Il Hiatus/no deposition

CELLULAR AUTOMATA

 Rule-based deterministic models

e Each cell evolves through time according to very simple
rules based on contents of neighbouring cells

e Combine with subsidence, sea-level, sediment
production etc to make a model of carbonate
accumulation ...

Cellular Automata Rules

Distance Min Max Min Max
Neighbours  neighbours trigger trigger
2 4 10 6 10

producer lithotope 1

= [ 1Primary producer lithotope 2 \

B Primary producer lithotope 3
e \What happens next to this cell?

e 4 same-lithotope neighbours
e So persists into next timestep

[ Byproduct lithotope 1

[ Byproduct lithotope 2
Il Erosion



Lithotope mosaic map
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Lithotope/process
B Histus/no deposition
1 primary producer lithotope 1
L1 Primary producer lithotope 2
B primary producer lithotope 3
L1 Byproduct lithotope 1

3 Byproduct lithotope 2
B £osion

CELLULAR AUTOMATA

Animation from “patches” initial condition
Each cell evolves through time according to
very simple rules based on contents of
neighbouring cells

20 time steps=20 ky

Lateral migration of facies

Increasing lateral heterogeneity/spatial

entropy

Even this simple model leads to complicated

results



CELLULAR AUTOMATA

CarboCAT

* 3D cellular automata model desgined to model platform
interior heterogeneity, constrained by lithofacies thickness
distributions

 Multiple facies calculated by cellular automata

 Simple sediment transport algorithms

* Depth-dependent sediment production rate

e Subsidence

e  Eustatic sea-level oscillations

Cellular Automata Rules
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CELLULAR AUTOMATA
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ORIGINS OF HETEROGENEITY
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e Vertical stacking in strata also
shows significant heterogeneity

600m s

e Many carbonates strata exhibit
exponential thickness
frequency distributions
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* New modelling directions

— Population modelling



COMMUNITY MODELS

Model spatial and temporal
distribution of carbonate
accumulation based on community
model

Community model encapsulates
competition, positive feedbacks in
occupied sites, and manipulation of

local environment by organisms



COMMUNITY MODELS

Population Approach Lotka-Volterra coupled ordinary differential equations

Mortality:
Increase (growth): * Day-in day-out Immigraﬁon:
e Growth in number of individuals * Extreme events * sz?t dlspersal
e Growth in % areal cover * Nelgh!oourlng cell
populations
e Suitable settlement
substrate

dN. N.
t=RN.(1-—)-=N, EA..N.—M. + /.
dt' l( K) Z(J ) ] l) l

1

Carrying Capacity:
¢ Physical & trophic habitat suitability
¢ ?Full capacity at optimum (restricted by

Competition (antagonism):
A,M,| of course)

e Space restriction and overgrowth
¢ Nutrient competition including light
by all J against i

numerical CARBONATE, Oct 2010
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 C-FRG research plans



C-FRG RESEARCH PLANS

Focus on development of workbench module
prototypes based on combined community model and
cellular automata approach

Integrate with available sediment transport modules
Development of supporting knowledge base with rate
data

New NSF grant proposal (and EU proposal?)

Expand group membership based on working model
modules

Testing of model against modern and ancient
carbonate systems






CELLULAR AUTOMATA

Lithofacies mosaic
planform, Florida Bay

By : Mid Cretaceous carbonate strata, central
s ‘ Spain —also a lithofacies mosaic?
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Cross-section of a lithofacies mosaic
from the computer model
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POPULATION MODELS

What carbonate properties should SedGrid store and how?

The hypothetical cell: [Aa 0.05; Ag 0.90; At 0.05]
The hypothetical cemented cell: [Aa 0.05; Ag 0.80; At 0.05; Bd 0.10]

Transport dictionary Aa Ag At Bd
Transportable Yes Yes No No

Grain size (mm) 2mm 10mm Null Null

Bulk density (gcm3) 2.1 2.2 Null Null
Grain shape?? Messy Spherical Null Null

Production dictionary Aa Ag At Bd

Name Coral X Grainwithnoname Seagrass Cement

Hardness Skeletal Skeletal Soft Null

Feeding habit Filter Mobile carnivore Photosynth Null

Trophic Type Pred, sessile Pred, mobile Primary Null

Trophic level 5 7 1 Null

Ingestion size Large Large Small Null

Temp range 21-27 16-27 15-27 Null

Salinity range Null

Mineralogy Aragonite Calcite Aragonite Aragonite
Roughness dictionary Aa Ag At Bd
Roughness Rough Smooth Rough Smooth
Form Upstanding Flat
Bafflement Some Lots None
Form drag 2.1




ORIGINS OF HETEROGENEITY

Reeder &
Atlantic Ocean Rankey, 2008
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