
Introduction to Parallel Programming

with MPI

Pavan Balaji

Argonne National Laboratory

balaji@mcs.anl.gov

http://www.mcs.anl.gov/~balaji

Slides are available at

http://www.mcs.anl.gov/~balaji/tmp/csdms-mpi-basic.pdf

mailto:balaji@mcs.anl.gov
http://www.mcs.anl.gov/~balaji
http://www.mcs.anl.gov/~balaji/tmp/csdms-mpi-basic.pdf
http://www.mcs.anl.gov/~balaji/tmp/csdms-mpi-basic.pdf
http://www.mcs.anl.gov/~balaji/tmp/csdms-mpi-basic.pdf
http://www.mcs.anl.gov/~balaji/tmp/csdms-mpi-basic.pdf
http://www.mcs.anl.gov/~balaji/tmp/csdms-mpi-basic.pdf

Pavan Balaji, Argonne National Laboratory

General principles in this tutorial

 Everything is practically oriented

 We will use lots of real example code to illustrate concepts

 At the end, you should be able to use what you have learned

and write real code, run real programs

 Feel free to interrupt and ask questions

 If my pace is too fast or two slow, let me know

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

About Myself

 Assistant Computer Scientist in the Mathematics and

Computer Science Division at Argonne National Laboratory

 Research interests in parallel programming, message passing,

global address space and task space models

 Co-author of the MPICH implementation of MPI

 Participate in the MPI Forum that defines the MPI standard

– Co-author of the MPI-2.1 and MPI-2.2 standards

– Lead the hybrid programming working group for MPI-3

– Active participant in the remote memory access (global address space

runtime system) working group for MPI-3

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What we will cover in this tutorial

 What is MPI?

 Fundamental concepts in MPI

 Point-to-point communication in MPI

 Group (collective) communication in MPI

 A sneak peak at MPI-3

 Conclusions and Final Q/A

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

The switch from sequential to parallel computing

 Moore’s law continues to be true, but…

– Processor speeds no longer double every 18-24 months

– Number of processing units double, instead

• Multi-core chips (dual-core, quad-core)

– No more automatic increase in speed for software

 Parallelism is the norm

– Lots of processors connected over a network and coordinating to

solve large problems

– Used every where!

• By USPS for tracking and minimizing fuel routes

• By automobile companies for car crash simulations

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Sample Parallel Programming Models

 Shared Memory Programming

– Processes share memory address space (threads model)

– Application ensures no data corruption (Lock/Unlock)

 Transparent Parallelization

– Compiler works magic on sequential programs

 Directive-based Parallelization

– Compiler needs help (e.g., OpenMP)

 Message Passing

– Explicit communication between processes (like sending and receiving

emails)

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

The Message-Passing Model

 A process is (traditionally) a program counter and address

space.

 Processes may have multiple threads (program counters and

associated stacks) sharing a single address space. MPI is for

communication among processes, which have separate

address spaces.

 Inter-process communication consists of

– synchronization

– movement of data from one process’s address space to another’s.

Process Process

MPI

MPI

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

The Message-Passing Model (an example)

 Each process has to send/receive data to/from other processes

 Example: Sorting Integers

8 23 19 67 45 35 1 24 13 30 3 5 O(N log N)

Process1

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

The Message-Passing Model (an example)

 Each process has to send/receive data to/from other processes

 Example: Sorting Integers

8 23 19 67 45 35 1 24 13 30 3 5

 8 19 23 35 45 67 1 3 5 13 24 30

Process1 Process2

O(N/2 log N/2) O(N/2 log N/2)

O(N log N)

Process1

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

The Message-Passing Model (an example)

 Each process has to send/receive data to/from other processes

 Example: Sorting Integers

8 23 19 67 45 35 1 24 13 30 3 5

 8 19 23 35 45 67 1 3 5 13 24 30

Process1 Process2

 1 3 5 8 67 13 19 23 24 30 35 45

O(N/2 log N/2) O(N/2 log N/2)

O(N log N)

O(N)

Process1

Process1

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Standardizing Message-Passing Models with MPI

 Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD) were

not portable (or very capable)

 Early portable systems (PVM, p4, TCGMSG, Chameleon) were

mainly research efforts

– Did not address the full spectrum of message-passing issues

– Lacked vendor support

– Were not implemented at the most efficient level

 The MPI Forum was a collection of vendors, portability writers and

users that wanted to standardize all these efforts

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What is MPI?

 MPI: Message Passing Interface

– The MPI Forum organized in 1992 with broad participation by:

• Vendors: IBM, Intel, TMC, SGI, Convex, Meiko

• Portability library writers: PVM, p4

• Users: application scientists and library writers

• MPI-1 finished in 18 months

– Incorporates the best ideas in a “standard” way

• Each function takes fixed arguments

• Each function has fixed semantics

– Standardizes what the MPI implementation provides and what the

application can and cannot expect

– Each system can implement it differently as long as the semantics match

 MPI is not…

– a language or compiler specification

– a specific implementation or product

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What is in MPI-1

 Basic functions for communication (100+ functions)

 Blocking sends, receives

 Nonblocking sends and receives

 Variants of above

 Rich set of collective communication functions

– Broadcast, scatter, gather, etc

– Very important for performance; widely used

 Datatypes to describe data layout

 Process topologies

 C and Fortran bindings

 Error codes and classes

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Following MPI Standards

 MPI-2 was released in 2000

– Several additional features including MPI + threads, MPI-I/O, remote

memory access functionality and many others

 MPI-2.1 (2008) and MPI-2.2 (2009) were recently released

with some corrections to the standard and small features

 The Standard itself:

– at http://www.mpi-forum.org

– All MPI official releases, in both postscript and HTML

 Other information on Web:

– at http://www.mcs.anl.gov/mpi

– pointers to lots of stuff, including other talks and tutorials, a FAQ,

other MPI pages

CSDMS workshop (10/16/2010)

http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mcs.anl.gov/mpi
http://www.mcs.anl.gov/mpi

Pavan Balaji, Argonne National Laboratory

The MPI Standard (1 & 2)

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Tutorial Material on MPI-1 and MPI-2

http://www.mcs.anl.gov/mpi/usingmpi
http://www.mcs.anl.gov/mpi/usingmpi2

CSDMS workshop (10/16/2010)

http://www.mcs.anl.gov/mpi/usingmpi
http://www.mcs.anl.gov/mpi/usingmpi
http://www.mcs.anl.gov/mpi/usingmpi2

Pavan Balaji, Argonne National Laboratory

Applications (Science and Engineering)

 MPI is widely used in large scale parallel applications in

science and engineering

– Atmosphere, Earth, Environment

– Physics - applied, nuclear, particle, condensed matter, high pressure,

fusion, photonics

– Bioscience, Biotechnology, Genetics

– Chemistry, Molecular Sciences

– Geology, Seismology

– Mechanical Engineering - from prosthetics to spacecraft

– Electrical Engineering, Circuit Design, Microelectronics

– Computer Science, Mathematics

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory
18

Turbo machinery (Gas turbine/compressor)

Drilling application

Biology application

Astrophysics application

Transportation & traffic

application

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Reasons for Using MPI

 Standardization - MPI is the only message passing library which can be

considered a standard. It is supported on virtually all HPC platforms.

Practically, it has replaced all previous message passing libraries

 Portability - There is no need to modify your source code when you port

your application to a different platform that supports (and is compliant

with) the MPI standard

 Performance Opportunities - Vendor implementations should be able to

exploit native hardware features to optimize performance

 Functionality – Rich set of features

 Availability - A variety of implementations are available, both vendor and

public domain

– MPICH2 is a popular open-source and free implementation of MPI

– Vendors and other collaborators take MPICH2 and add support for their systems

• Intel MPI, IBM Blue Gene MPI, Cray MPI, Microsoft MPI, MVAPICH2, MPICH2-MX

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Important considerations while using MPI

 All parallelism is explicit: the programmer is responsible for

correctly identifying parallelism and implementing parallel

algorithms using MPI constructs

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What we will cover in this tutorial

 What is MPI?

 Fundamental concepts in MPI

 Point-to-point communication in MPI

 Group (collective) communication in MPI

 A sneak peak at MPI-3

 Conclusions and Final Q/A

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

MPI Basic Send/Receive

 Simple communication model

 Application needs to specify to the MPI implementation:

1. How will processes be identified?

2. How will “data” be described?

Process 0 Process 1

Send(data)

Receive(data)

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Process Identification

 MPI Processes can be collected into groups

 Each group of processes can have multiple contexts

 A group and context together form a communicator

– Simple programs typically use just one context

– In this case, a communicator is equivalent to a group of processes

 A process is identified by its rank within its communicator

 There is a default communicator that contains all initial

processes, called MPI_COMM_WORLD

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
contexts)

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
contexts)

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
contexts)

Communicators do not
need to contain all

processes in the system

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
contexts)

Communicators do not
need to contain all

processes in the system

Every process in a
communicator has an ID

called as “rank”

1 2 3 4

5 6 7 8

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
contexts)

Communicators do not
need to contain all

processes in the system

Every process in a
communicator has an ID

called as “rank”

2 3

6 7

3 4

5 6

1 2

7 8

The same process might have different
ranks in different communicator

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Communicator = Group of processes + Context

When you start an MPI
program, there is one

predefined communicator
MPI_COMM_WORLD

Can make copies of this
communicator (same group of

processes, but different
contexts)

Communicators do not
need to contain all

processes in the system

Every process in a
communicator has an ID

called as “rank”

2 3

6 7

3 4

5 6

1 2

7 8

The same process might have different
ranks in different communicator

Communicators can be created “by hand” or using tools provided by MPI (not discussed

in this tutorial)

Simple programs typically only use the predefined communicator MPI_COMM_WORLD

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Source and Destination Ranks

 When sending data, the sender has to specify the destination

process’ rank

– Tells where the message should go

 The receiver has to specify the source process’ rank

– Tells where the message will come from

 MPI_ANY_SOURCE is a special “wild-card” source that can be

used by the receiver to match any source

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Simple MPI Program

#include "mpi.h"

#include <stdio.h>

int main(int argc, char ** argv)

{

 MPI_Init(&argc, &argv);

 MPI_Finalize();

 return 0;

}

Basic
requirements

for an MPI
program

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Simple MPI Program

#include "mpi.h"

#include <stdio.h>

int main(int argc, char ** argv)

{

 int rank, size;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 printf("I am %d of %d\n", rank, size);

 MPI_Finalize();

 return 0;

}

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Data Description: MPI Datatypes

 MPI Datatype is very similar to a C or Fortran datatype

– int  MPI_INT

– double  MPI_DOUBLE

– char  MPI_CHAR

 More complex datatypes are also possible:

– E.g., you can create a structure datatype that comprises of other

datatypes  a char, an int and a double.

– Or, a vector datatype for the columns of a matrix

 The “count” in MPI_SEND and MPI_RECV refers to how many

datatype elements should be communicated

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Recognizing/Screening different types of data: MPI

Tags

 Messages are sent with an accompanying user-defined

integer tag, to assist the receiving process in identifying the

message

 For example, if an application is expecting two types of

messages from a peer, tags can help distinguish these two

types

 Messages can be screened at the receiving end by specifying

a specific tag

 MPI_ANY_TAG is a special “wild-card” tag that can be used by

the receiver to match any tag

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What we will cover in this tutorial

 What is MPI?

 Fundamental concepts in MPI

 Point-to-point communication in MPI

 Group (collective) communication in MPI

 A sneak peak at MPI-3

 Conclusions and Final Q/A

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

MPI Basic (Blocking) Send

MPI_SEND (buf, count, datatype, dest, tag, comm)

 The message buffer is described by (buf, count, datatype).

 The target process is specified by dest and comm.

– dest is the rank of the target process in the communicator specified by

comm.

 tag is a user-defined “type” for the message

 When this function returns, the data has been delivered to the

system and the buffer can be reused.

– The message may not have been received by the target process.

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

MPI Basic (Blocking) Receive

MPI_RECV(buf, count, datatype, source, tag, comm, status)

 Waits until a matching (on source, tag, comm) message is received

from the system, and the buffer can be used.

 source is rank in communicator comm, or MPI_ANY_SOURCE.

 Receiving fewer than count occurrences of datatype is OK, but

receiving more is an error.

 status contains further information:

– Who sent the message

– How much data was actually received

– MPI_STATUS_IGNORE can be used if we don’t need any additional information

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Simple Communication in MPI

#include "mpi.h"

#include <stdio.h>

int main(int argc, char ** argv)

{

 int rank, data[100];

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 if (rank == 0)

 MPI_Send(data, 100, MPI_INT, 1, 0, MPI_COMM_WORLD);

 else

 MPI_Recv(data, 100, MPI_INT, 0, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);

 MPI_Finalize();

 return 0;

}

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Parallel Sort using MPI Send/Recv

8 23 19 67 45 35 1 24 13 30 3 5

 8 19 23 35 45 67 1 3 5 13 24 30

Rank 0 Rank 1

 8 19 23 35 30 45 67 1 3 5 13 24

O(N log N)

 1 3 5 8 67 13 19 23 24 30 35 45

Rank 0

Rank 0

Rank 0

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Parallel Sort using MPI Send/Recv (contd.)

#include "mpi.h"

#include <stdio.h>

void sort(int * x, int count, int * y)

{

 /* Sort the array „x‟ of count elements and

 * place the sorted array in y */

}

int main(int argc, char ** argv)

{

 int rank, size;

 int a[1000], b[1000]; /* Array of 1000 integers */

 MPI_Status status;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Parallel Sort using MPI Send/Recv (contd.)

 if (rank == 0) {

 MPI_Send(&a[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD);

 sort(&a[0], 500, &b[0]);

 MPI_Recv(&b[500], 500, MPI_INT, 1, 0, MPI_COMM_WORLD,

 &status);

 }

 else {

 MPI_Recv(&a[0], 500, MPI_INT, 0, 0, MPI_COMM_WORLD,

 &status);

 sort(&a[0], 500, &b[0]);

 MPI_Send(&b[0], 500, MPI_INT, 0, 0, MPI_COMM_WORLD);

 }

 for (x = 0, i = 0, j = 500; i < 500 || j < 1000; x++) {

 if (b[i] < b[j]) a[x] = b[i++];

 else a[x] = b[j++];

 }

 MPI_Finalize(); return 0;

}

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Status Object

 The status object is used after completion of a receive to find the

actual length, source, and tag of a message

 Status object is MPI-defined type and provides information about:

– The source process for the message (status.source)

– The message tag (status.tag)

 The number of elements received is given by:

MPI_Get_count(MPI_Status *status, MPI_Datatype datatype, int *count)

status return status of receive operation (status)

datatype datatype of each receive buffer element (handle)

count number of received elements (integer)(OUT)

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Using the “status” field

 Each “worker process” computes some data (maximum 100

elements) and sends it to the “master” process together with

its group number: the “tag” field can be used to represent the

group ID

– Data count is not fixed (maximum 100 elements)

– Order in which workers send output to master is not fixed (different

workers = different src ranks, and different groups = different tags)

Group 1 Group 2

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Using the “status” field (contd.)

#include "mpi.h"

#include <stdio.h>

int main(int argc, char ** argv)

{

 [...snip...]

 if (rank != 0)

 MPI_Send(data, rand() % 100, MPI_INT, 0, group_id,

 MPI_COMM_WORLD);

 else {

 MPI_Recv(data, 100, MPI_INT, MPI_ANY_SOURCE,

 MPI_ANY_TAG, MPI_COMM_WORLD, &status);

 MPI_Get_count(&status, MPI_INT, &count);

 printf(“worker ID: %d; group ID: %d; count: %d\n”,

 status.source, status.tag, count);

 }

 [...snip...]

}

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

MPI is Simple

 Many parallel programs can be written using just these six functions, only

two of which are non-trivial:

– MPI_INIT – initialize the MPI library (must be the

first routine called)

– MPI_COMM_SIZE - get the size of a communicator

– MPI_COMM_RANK – get the rank of the calling process

in the communicator

– MPI_SEND – send a message to another process

– MPI_RECV – send a message to another process

– MPI_FINALIZE – clean up all MPI state (must be the

last MPI function called by a process)

 For performance, however, you need to use other MPI features

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Blocking vs. Non-blocking Communication

 When these calls return the memory locations used in the

message transfer can be safely accessed for reuse

– Modifications will not affect data intended for the receiver

– For “send” completion implies variable sent can be reused/modified

– For “receive” variable received can be read

 MPI_SEND/MPI_RECV are blocking communication calls

– Return of the routine implies completion

 Non-blocking variants of these are also available

– MPI_ISEND/MPI_IRECV

– Routine returns immediately – completion has to be separately tested for

– These are primarily used to overlap computation and communication to

improve performance

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Blocking Communication

 In Blocking communication.

– MPI_SEND does not complete until buffer is empty (available for reuse)

– MPI_RECV does not complete until buffer is full (available for use)

 A process sending data will be blocked until data in the send buffer is

emptied

 A process receiving data will be blocked until the receive buffer is filled

 Completion of communication generally depends on the message size and

the system buffer size

 Blocking communication is simple to use but can be prone to deadlocks

 If (rank == 0) Then

 Call mpi_send(..)

 Call mpi_recv(..)

Usually deadlocks  Else

 Call mpi_send(..)  UNLESS you reverse send/recv

 Call mpi_recv(..)

 Endif

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory 50

time

Blocking Send-Receive Diagram

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Non-Blocking Communication

 Non-blocking (asynchronous) operations return (immediately) ‘‘request

handles” that can be waited on and queried

– MPI_ISEND(start, count, datatype, dest, tag, comm, request)

– MPI_IRECV(start, count, datatype, src, tag, comm, request)

– MPI_WAIT(request, status)

 Non-blocking operations allow overlapping computation and communication

 One can also test without waiting using MPI_TEST

– MPI_TEST(request, flag, status)

 Anywhere you use MPI_SEND or MPI_RECV, you can use the pair of

MPI_ISEND/MPI_WAIT or MPI_IRECV/MPI_WAIT

 Combinations of blocking and non-blocking sends/receives can be used to

synchronize execution instead of barriers

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Multiple Completions

 It is sometimes desirable to wait on multiple requests:

– MPI_Waitall(count, array_of_requests, array_of_statuses)

– MPI_Waitany(count, array_of_requests, &index, &status)

– MPI_Waitsome(count, array_of_requests, array_of indices,

 array_of_statuses)

 There are corresponding versions of test for each of these

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

53

Non-Blocking Send-Receive Diagram

time

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Message Completion and Buffering

 For a communication to succeed:
– Sender must specify a valid destination rank

– Receiver must specify a valid source rank

– The communicator must be the same

– Tags must match

– Receiver’s buffer must be large enough

 A send has completed when the user supplied buffer can be reused

 Just because the send completes does not mean that the receive has
completed
– Message may be buffered by the system

– Message may still be in transit

*buf =3;

MPI_Send(buf, 1, MPI_INT …)

buf = 4; / OK, receiver will always

receive 3*/

*buf =3;

MPI_Isend(buf, 1, MPI_INT …)

*buf = 4; /*Not certain if receiver

gets 3 or 4 */

MPI_Wait(…);

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example

CSDMS workshop (10/16/2010)

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example

CSDMS workshop (10/16/2010)

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example

CSDMS workshop (10/16/2010)

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example

CSDMS workshop (10/16/2010)

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example

CSDMS workshop (10/16/2010)

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example

CSDMS workshop (10/16/2010)

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example

CSDMS workshop (10/16/2010)

P0

P1

Blocking
Communication

P0

P1

 Non-blocking
Communication

Pavan Balaji, Argonne National Laboratory

A Non-Blocking communication example (contd.)

int main(int argc, char ** argv)

{

 [...snip...]

 if (rank == 0) {

 for (i=0; i< 100; i++) {

 /* Compute each data element and send it out */

 data[i] = compute(i);

 MPI_ISend(&data[i], 1, MPI_INT, 1, 0, MPI_COMM_WORLD,

 &request[i]);

 }

 MPI_Waitall (100, request, MPI_STATUSES_IGNORE)

 }

 else {

 for (i = 0; i < 100; i++)

 MPI_Recv(&data[i], 1, MPI_INT, 0, 0, MPI_COMM_WORLD,

 MPI_STATUS_IGNORE);

 }

 [...snip...]

}

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What we will cover in this tutorial

 What is MPI?

 Fundamental concepts in MPI

 Point-to-point communication in MPI

 Group (collective) communication in MPI

 A sneak peak at MPI-3

 Conclusions and Final Q/A

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Introduction to Collective Operations in MPI

 Collective operations are called by all processes in a

communicator.

 MPI_BCAST distributes data from one process (the root) to all

others in a communicator.

 MPI_REDUCE combines data from all processes in

communicator and returns it to one process.

 In many numerical algorithms, SEND/RECEIVE can be replaced

by BCAST/REDUCE, improving both simplicity and efficiency.

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

MPI Collective Communication

 Communication and computation is coordinated among a

group of processes in a communicator

 Tags are not used; different communicators deliver similar

functionality

 No non-blocking collective operations

– (they are being added in MPI-3)

 Three classes of operations: synchronization, data movement,

collective computation

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Synchronization

 MPI_Barrier(comm)

 Blocks until all processes in the group of the communicator

comm call it

 A process cannot get out of the barrier until all other

processes have reached barrier

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Collective Data Movement

A
B

D
C

B C D

A
A

A
A

Broadcast

Scatter

Gather

A

A

P0

P1

P2

P3

P0

P1

P2

P3

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

More Collective Data Movement

A
B

D
C

A0 B0 C0 D0

A1 B1 C1 D1

A3 B3 C3 D3

A2 B2 C2 D2

A0 A1 A2 A3

B0 B1 B2 B3

D0 D1 D2 D3

C0 C1 C2 C3

A B C D
A B C D

A B C D
A B C D

Allgather

Alltoall

P0

P1

P2

P3

P0

P1

P2

P3

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Collective Computation

P0

P1

P2

P3

P0

P1

P2

P3

A

B

D
C

A
B

D
C

ABCD

A
AB

ABC
ABCD

Reduce

Scan

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

MPI Collective Routines

 Many Routines: Allgather, Allgatherv, Allreduce,

Alltoall, Alltoallv, Bcast, Gather, Gatherv,

Reduce, ReduceScatter, Scan, Scatter,

Scatterv

 “All” versions deliver results to all participating processes.

 “V” versions (stands for vector) allow the hunks to have different

sizes.

 Allreduce, Reduce, ReduceScatter, and Scan take both

built-in and user-defined combiner functions.

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

MPI Built-in Collective Computation Operations

 MPI_Max

 MPI_Min

 MPI_Prod

 MPI_Sum

 MPI_Land

 MPI_Lor

 MPI_Lxor

 MPI_Band

 MPI_Bor

 MPI_Bxor

 MPI_Maxloc

 MPI_Minloc

Maximum

Minimum

Product

Sum

Logical and

Logical or

Logical exclusive or

Bitwise and

Bitwise or

Bitwise exclusive or

Maximum and location

Minimum and location

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Defining your own Collective Operations

 Create your own collective computations with:
MPI_Op_create(user_fn, commutes, &op);

MPI_Op_free(&op);

user_fn(invec, inoutvec, len, datatype);

 The user function should perform:

inoutvec[i] = invec[i] op inoutvec[i];

for i from 0 to len-1

 The user function can be non-commutative, but must be

associative

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Example: Calculating Pi

1

1
 Calculating pi via numerical

integration

– Divide interval up into subintervals

– Assign subintervals to processes

– Each process calculates partial sum

– Add all the partial sums together to

get pi

CSDMS workshop (10/16/2010)

“n” segments

1. Width of each segment (w) will be 1/n

2. Distance (d(i)) of segment “i” from the origin will be “i * w”

3. Height of segment “i” will be sqrt(1 – d(i))

Pavan Balaji, Argonne National Laboratory

Example: PI in C

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

 [...snip...]

 /* Tell all processes, the number of segments you want */

 MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

 w = 1.0 / (double) n;

 mypi = 0.0;

 for (i = myid + 1; i <= n; i += numprocs)

 mypi += sqrt(1 – (w * i));

 MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

 if (myid == 0)

 printf("pi is approximately %.16f, Error is %.16f\n", pi,

 fabs(pi - PI25DT));

 [...snip...]

}

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What we will cover in this tutorial

 What is MPI?

 Fundamental concepts in MPI

 Point-to-point communication in MPI

 Group (collective) communication in MPI

 A sneak peak at MPI-3

 Conclusions and Final Q/A

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Ongoing effort in multiple areas

 Collective Communication

– Non-blocking collective operations

– Sparse collective operations

 Remote Memory Access

– Improvements Get/Put model

 Hybrid Programming

– Improved interoperability with threads

– Interoperability with shared memory programming

– Interoperability with PGAS models

 Fault Tolerance

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

What we will cover in this tutorial

 What is MPI?

 Fundamental concepts in MPI

 Point-to-point communication in MPI

 Group (collective) communication in MPI

 A sneak peak at MPI-3

 Conclusions and Final Q/A

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Conclusions

 Parallelism is critical today, given that that is the only way to

achieve performance improvement with the modern

hardware

 MPI is an industry standard model for parallel programming

– A large number of implementations of MPI exist (both commercial and

public domain)

– Virtually every system in the world supports MPI

 Gives user explicit control on data management

 Widely used by many many scientific applications with great

success

 Your application can be next!

CSDMS workshop (10/16/2010)

Pavan Balaji, Argonne National Laboratory

Web Pointers

 MPI standard : http://www.mpi-forum.org/docs/docs.html

 MPICH2 : http://www.mcs.anl.gov/research/projects/mpich2/

 MPICH mailing list: mpich-discuss@mcs.anl.gov

 MPI Forum : http://www.mpi-forum.org/

 Other MPI implementations:

– MVAPICH2 (MPICH on InfiniBand) : http://mvapich.cse.ohio-state.edu/

– Intel MPI (MPICH derivative): http://software.intel.com/en-us/intel-mpi-

library/

– Microsoft MPI (MPICH derivative)

– Open MPI : http://www.open-mpi.org/

 Several MPI tutorials can be found on the web

CSDMS workshop (10/16/2010)

http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mcs.anl.gov/research/projects/mpich2/
mailto:mpich-discuss@mcs.anl.gov
mailto:mpich-discuss@mcs.anl.gov
mailto:mpich-discuss@mcs.anl.gov
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://www.mpi-forum.org/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://software.intel.com/en-us/intel-mpi-library/
http://www.open-mpi.org/
http://www.open-mpi.org/
http://www.open-mpi.org/

