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1. Overview

The learning goals of this exercise are:

Figure 1. Schematic diagram of CHILD
model’s representation of the landscape:
hexagonal Voronoi cells, nodes (at centers
of cells) connected by the edges of the De-
launay triangulation, vegetated cell surfaces,
channelized cells, and soil and sediment lay-
ers above bedrock.

• To gain a clearer understanding of
how a typical landscape evolution
model (LEM) solves the governing
equations that represent geomorphic
processes.

• To gain hands-on experience actually
using a LEM.

• To understand how continuity of mass
is maintained by a typical LEM, and
some of the limitations that arise.

• To appreciate some of the ways in
which climate and hydrology can be
represented in a LEM, and some of
the simplifications involved.

• To appreciate that working with LEMs involves choosing a level of simplification in
the governing physics that is appropriate to the problem at hand.

Date: Short Course notes prepared for SIESD 2012: Future Earth: Interaction of Climate and Earth-
surface Processes, University of Minnesota, Minneapolis, Minnesota, USA, August 2012.
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• To get a sense for how and why soil creep produces convex hillslopes.

• To appreciate the concepts of transient versus steady topography.

• To acquire a feel for the similarity and difference between detachment-limited and
transport-limited modes of fluvial erosion.

• To understand the connection between fluvial physics and slope-area plots.

• To appreciate that LEMs (1) are able to reproduce (and therefore, at least potentially,
explain) common forms in fluvially carved landscapes, (2) can enhance our insight into
dynamics via visualization and experimentation, but (3) leave open many important
questions regarding long-term process physics.

• To develop a sense “best practice” in using landscape evolution models.

2. Introduction to LEMs

2.1. Brief History. G.K. Gilbert, a member of the Powell Expedition, produced “word
pictures” of landscape evolution that still provide insight (Gilbert , 1877). For example,
consider his “Law of Divides” (Gilbert , 1877):

We have seen that the declivity over which water flows bears an inverse relation
to the quantity of water. If we follow a stream from its mouth upward and pass
successively the mouths of its tributaries, we find its volume gradually less and less
and its grade steeper and steeper, until finally at its head we reach the steepest
grade of all. If we draw the profile of the river on paper, we produce a curve concave
upward and with the greatest curvature at the upper end. The same law applies
to every tributary and even to the slopes over which the freshly fallen rain flows
in a sheet before it is gathered into rills. The nearer the water-shed or divide the
steeper the slope; the farther away the less the slope.

It is in accordance with this law that mountains are steepest at their crests. The
profile of a mountain if taken along drainage lines is concave outward...; and this is
purely a matter of sculpture, the uplifts from which mountains are carved rarely if
ever assuming this form.

Flash forward to the 1960’s, and we find the emergence of the first one-dimensional profile
models. Culling (1963), for example, used the diffusion equation to describe the relaxation
of escarpments over time.

Models became more sophisticated in the early 1970’s. Frank Ahnert and Mike Kirkby,
among others, began to develop computer models of slope profile development and included
not only diffusive soil creep but also fluvial downcutting as well as weathering (Ahnert , 1971;
Kirkby , 1971). Meanwhile, Alan Howard developed a simulation model of channel network
evolution (Howard , 1971).

The mid-1970’s saw the first emergence of fully two-dimensional (and even quasi-three-
dimensional) landscape evolution models, perhaps most noteworthy that of Ahnert (1976).
Geomorphologists would have to wait nearly 15 years for models to surpass the level of
sophistication found in this early model.
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Table 1. Partial list of numerical landscape models published between 1991 and 2005.

Model Example reference Notes
SIBERIA Willgoose et al. (1991) Transport-limited;

Channel activator function
DRAINAL Beaumont et al. (1992) “Undercapacity” concept
GILBERT Chase (1992) Precipiton
DELIM/MARSSIM Howard (1994) Detachment-limited;

Nonlinear diffusion
GOLEM Tucker and Slingerland (1994) Regolith generation;

Threshold landsliding
CASCADE Braun and Sambridge (1997) Irregular discretization
CAESAR Coulthard et al. (1996) Cellular automaton algorithm

for 2D flow field
ZSCAPE Densmore et al. (1998) Stochastic bedrock

landsliding algorithm
CHILD Tucker and Bras (2000) Stochastic rainfall
EROS Crave and Davy (2001) Modified precipiton
TISC Garcia-Castellanos (2002) Thrust stacking
LAPSUS Schoorl et al. (2002) Multiple flow directions
APERO/CIDRE Carretier and Lucazeau (2005) Single or multiple

flow directions

During that time, computers would become much more powerful and able to model full
landscapes. The late 1980’s through the mid-1990’s saw the beginning of the “modern
era” of landscape evolution models, and today there are many model codes with as many
applications, scales, and objectives, ranging from soil erosion to continental collision (Table
1).

2.2. Brief Overview of Models and their Uses. Some examples of landscape evolution
models (LEMs) are shown in Table 1. LEMs have been developed to represent, for example,
coupled erosion-deposition systems, meandering, Mars cratering, forecasting of mine-spoil
degradation, and estimation of erosion risk to buried hazardous waste. These models pro-
vide powerful tools, but their process ingredients are generally provisional and subject to
testing. For this reason, it is important to have continuing cross-talk between modeling and
observations—after all, that’s how science works.

In this exercise, we provide an overview of how a LEM works, including how terrain and
water flow are represented numerically, and how various processes are computed.

3. Continuity of Mass and Discretization

A typical mass continuity equation for a column of soil or rock is:

∂η

∂t
= B −∇~qs (1)
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where η is the elevation of the land surface [L]1; t is time; B [L/T] represents the vertical
motion of the rocks and soil relative to baselevel (due, for example, to tectonic uplift or
subsidence, sea-level change, or erosion along the boundary of the system); and ~qs is sediment
flux per unit width [L2/T]. This is one of several variations; for discussion of others, see
Tucker and Hancock (2010). Some models, for example, distinguish between a regolith layer
and the bedrock underneath (Fig. 1). Note that this type of mass continuity equation applies
only to terrain that has one and only one surface point for each coordinate; it would not
apply to a vertical cliff or an overhang.

A LEM computes η(x, y, t) given (1) a set of process rules, (2) initial conditions, and (3)
boundary conditions. One thing all LEMs have in common is that they divide the terrain
into discrete elements. Often these are square elements, but sometimes they are irregular
polygons (as in the case of CASCADE and CHILD; Fig. 1). For a discrete parcel (or “cell”)
of land, continuity of mass enforced by the following equation (in words):

Time rate of change of mass in element = mass rate in at boundaries - mass rate out at
boundaries + inputs or outputs from above or below (tectonics, dust deposition, etc.)

This statement can be expressed mathematically, for cell

i

qsj

k

jλ

Figure 2. Schematic diagram
of CHILD mesh with illustra-
tion of calculation of volumet-
ric fluxes between cells. Dashed
lines indicate cells and their
faces, solid circles are nodes, and
solid lines show the edges be-
tween nodes.

i, as follows:

dηi
dt

= B +
1

Λi

N∑
j=1

qsjλj (2)

where Λi is the horizontal surface area of cell i; N is
the number of faces surrounding cell i; qsj is the unit
flux across face j; and λj is the length of face j (Fig.
2). (Note that, for the sake of simplicity, we are using
volume rather than mass flux; this is ok as long as the
mass density of the material is unchanging). Equation
(2) expresses what is known as a finite-volume method
because it is based on computing fluxes in and out along
the boundaries of a finite volume of space.

Some terminology: a cell is a patch of ground with bound-
aries called faces. A node is the point inside a cell at
which we track elevation (and other properties). On a
raster grid, each cell is square and each node lies at the
center of a cell. On the irregular mesh used by CAS-
CADE and CHILD, the cell is the area of land that is
closer to that particular node than to any other node in the mesh. (It is a mathematical
entity known as a Voronoi cell or Thiessen polygon; for more, see Braun and Sambridge
(1997), Tucker et al. (2001a).)

Equation 2 gives us the time derivatives for the elevation of every node on the grid. How
do we solve for the new elevations at time t? There are many ways to do this, including
matrix-based implicit solvers (see for example Fagherazzi et al. (2002); Perron (2011)). We
won’t get into the details of numerical solutions (at least not yet), but for now note that the

1The letters in square brackets indicate the dimensions of each variable; L stands for length, T for time,
and M for mass.
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simplest solution is the forward-difference approximation:

dηi
dt
≈ ηi(t+ ∆t)− ηi(t)

∆t
(3)

ηi(t+ ∆t) = ηi(t) + U∆t+ ∆t
1

Λi

N∑
j=1

qsjλj (4)

The main disadvantage of this approach is that very small time steps are typically needed
in order to ensure numerical stability. (CHILD uses a variant of this that seeks the largest
possible stable value of ∆t at each iteration). A good discussion of numerical stability,
accuracy, and alternative methods for diffusion-like problems can be found in Press et al.
(2007).

4. Gravitational Hillslope Transport

Geomorphologists often distinguish between hillslope and channel processes. It’s a useful
distinction, although one has to bear in mind that the transition is not always abrupt, and
even where it is abrupt, it is commonly either discontinuous or highly dynamic or both.

Alternatively, one can also distinguish between processes that are driven nearly exclusively
by gravitational processes, and those that involve a fluid phase (normally water or ice). This
distinction too has a gray zone: landslides are gravitational phenomena but often triggered
by fluid pore pressure, while debris flows are surges of mixed fluid and solid. Nonetheless,
we will start with a consideration of one form of gravitational transport on hillslopes: soil
creep.

4.1. Linear Diffusion. For relatively gentle, soil-mantled slopes, there is reasonably strong
support for a transport law of the form:

~qs = −D∇η (5)

where D is a transport coefficient with dimensions of L2T−1. Using the finite-volume method
outlined in equation 2, we want to calculate ~qs at each of the cell faces. Suppose node i
and node k are neighboring nodes that share a common face (we’ll call this face j). We
approximate the gradient between nodes i and k as:

Sik =
ηk − ηi
Lik

(6)

where Lik is the distance between nodes. On a raster grid, Lik = ∆x is simply the grid
spacing. The sediment flux per unit width is then

qsik ' D
ηk − ηi
Lik

(7)

where qsik is the volume flux per unit width from node k to node i (if negative, sediment flows
from i to k), and Lik is the distance between nodes. On a raster grid, Lik = ∆x is simply
the grid spacing. To compute the total sediment flux through face j, we simply multiply the
unit flux by the width of face j, which we denote λij (read as “the j-th face of cell i”):

Qsik = qsikλij (8)
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Exercise 1: Getting Set Up with CHILD.

Our first exercise is simply to (1) get the model, input files, documentation, and
visualization tools and (2) run the executable file to make sure it is installed and
working correctly. In some cases, it might be necessary to create a new executable
file from the source code.

For SIESD 2012, the package will already have been installed on the computers
in the lab. Look for it in the folder: C:\child\ChildExercises.

If you are working on your own computer:

If you are working on your own computer, you will need to download a copy of the
latest CHILD release from the Community Surface Dynamics Modeling System
(CSDMS) web site:

http: // csdms. colorado. edu

Once you have downloaded and unwrapped the package, locate the users’ guide
and follow the instructions to compile the model on your particular platform. You
will need to use either a UNIX shell or the Command window under Windows.
On a mac, use the Terminal application. On a windows machine, use either
a UNIX emulator shell such as cygwin on a PC, or the command window. In a
UNIX shell, to change folders (“directories” in UNIX-speak), use cd followed by
the folder name. A single period represents the current working directory; two
periods represent the next directory up. For example, the command cd .. takes
you one level up. To get a list of files in a directory, use ls. For Command
prompt under windows, use dir instead of ls and backslashes instead of forward
slashes.

Start up Command Window. In the command window, type child. You should
see something like the following:

Usage: child [options] <input file>

--help: display this help message.

--no-check: disable CheckMeshConsistency().

--silent-mode: silent mode.

--version: display version.

While we’re at it, let’s get ready to visualize the output. Start Matlab. The first
thing we will do is tell Matlab where to look for the plotting programs that we
will use. At the Matlab command prompt type:

path( path, ’childFolderLocation\ChildExercises\MatlabScripts’ )

For childFolderLocation, use the path name of the folder that contains the CHILD
package. You can also add a folder to your path by selecting File->Set Path...
from the menu.

In Matlab, navigate the current folder to the location of the example input file
hillslope1.in (which should end in: ChildExercises\Hillslope1).
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Note that the “package” also includes some documentation that you may find
useful: the ChildExercises folder contains an earlier version of this document,
and the Doc folder contains the Users’ Guide (child users guide.pdf). The
guide covers the nuts and bolts of the model in much greater detail than these
exercises and includes a full list of input parameters.

Exercise 2: Hillslope Diffusion and Parabolic Slopes with CHILD.

(1) In your terminal window, navigate to the ChildExercises\Hillslope1 folder.

(2) To run the example, in your terminal window type:

child hillslope1.in

(3) A series of numbers will flash by on the screen. These numbers represent time
intervals in years. The 2-million-year run takes about 20 seconds on a 2GHz Intel
Mac. When it finishes, return to Matlab and type:

m = cmovie( ’hillslope1’, 21, 200, 200, 100, 50 );

(This command says “generate a 21-frame movie from the run ‘hillslope1’ with
the x-, y- and z- axes set to 200, 200 and 100 m, respectively, and with the color
range representing 0 to 50 m elevation).

(4) To replay the movie, type movie(m).

(Windows note: we found that under Vista and Windows 7, the movie figure gets
erased after display; slightly re-sizing the figure window seems to fix this).

The analytical solution to elevation as a function of cross-ridge distance y is:

z(y) =
U

2D

(
L2 − (y − y0)2

)
(9)

where L is the half-width of the ridge (100 m in this case) and y0 is the position of the
ridge crest (also 100 m). The effective uplift rate U , represented in the input file by
the parameter UPRATE, is 10−4 m/yr. The diffusivity coefficient D, represented in the
input file by parameter KD, is 0.01 m2/yr. Next, we’ll make a plot that compares the
computed and analytical solutions.

Enter the following in Matlab:

• ya = 0:200; % This is our x-coordinate

• U = 0.0001; D = 0.01; y0 = 100; L = 100;

• za = (U/(2*D))*(L^2-(ya-y0).^2);

• figure(2), plot( ya, za ), hold on

• xyz = creadxyz( ’hillslope1’, 21 ); % Reads node coords, time 21

• plot( xyz(:,2), xyz(:,3), ’r.’ ), hold off

• legend( ’Analytical solution’, ’CHILD Nodes’ )

Diffusion theory predicts that equilibrium height varies linearly with U , inversely with
D, and as the square of L. Make a copy of hillslope1.in and open the copy in a text
editor. Change one of these three parameters. To change U , edit the number below the
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line that starts with UPRATE. Similarly, to change D, edit the value of parameter KD. If
you want to try a different ridge width L, change both Y GRID SIZE and GRID SPACING

by the same proportion (changing GRID SPACING will ensure that you keep the same
number of model nodes). Re-run CHILD with your modified input file and see what
happens.

4.2. Nonlinear Diffusion. As we found in our study of hillslope transport processes, the
simple slope-linear transport law works poorly for slopes that are not “small” relative to the
angle of repose for sediment and rock. The next example explores what happens to our ridge
when we (1) increase the relative uplift rate, and (2) use the nonlinear diffusion transport
law:

~qs =
−D∇z

1− |∇z/Sc|2
(10)

Exercise 3: Nonlinear Diffusion and Planar Slopes.

(1) Navigate to the Hillslope2 folder

(2) Run CHILD: child hillslope2.in

(3) In Matlab, navigate to the Hillslope2 folder

(4) When the 70,000-year run (∼1 minute on a 2GHz mac) finishes, type in Matlab:

m = cmovie( ’hillslope2’, 21, 200, 200, 100, 70 );

If we had used linear diffusion, the equilibrium slope gradient along the edges of the
ridge would be S = UL/D = (0.001)(100)/(0.01) = 10 m/m, or about 84◦! Instead,
the actual computed gradient is close to the threshold limit of 0.7. Notice too how
the model solution speed slowed down as the run went on. This reflects the need for
especially small time steps when the slopes are close to the threshold angle.

4.3. Remarks. There is a lot more to mass movement than what is encoded in these simple
diffusion-like transport laws. Some models include stochastic landsliding algorithms (e.g.,
CASCADE, ZSCAPE). Some impose threshold slopes (e.g., GOLEM). One spinoff version
of CHILD even includes debris-flow generation and routing (Lancaster et al., 2003).

5. Rainfall, Runoff, and Drainage Networks

In order to calculate erosion, sediment transport, and deposition by running water, a model
needs to know how much surface water is flowing through each cell in the model. Usually,
the erosion/transport equations require either the total discharge, Q [L3/T], the discharge
per unit channel width, q [L2/T], or the flow depth, H.

There are three main alternative methods for modeling the flow of water across the land-
scape:

(1) Methods based on contributing drainage area

(2) Numerical solutions to the 2D, vertically integrated and time-averaged Navier-Stokes
equations
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(3) Cellular automaton methods

5.1. Methods Based on Drainage Area. Drainage area, A, is the horizontally projected
area of land that contributes flow to a particular channel cross-section or to unit length of
contour on a hillslope. For a numerical landscape model that uses discrete cells, A is defined
as the area that contributes flow to a particular cell. When topography is represented as a
raster grid, the most common method for computing drainage area is the D8 method. Each
cell is assigned a flow direction toward one of its 8 surrounding neighbors. An algorithm is
then used to trace flow paths downstream and add up the number of cells that contribute
flow each cell (Fig. 3).

For the Voronoi cell matrix that

23% 49% 28%100%

Single-flowElevations

340

345345

340

336 334 335

340

345

Multiple-flow

Figure 3. Flow accumulation by D8, or single flow di-
rections, and multiple flow directions (Schäuble et al.,
2008).

CHILD and CASCADE use, the
simplest routing procedure is a
generalization of D8 (Figure 1).
Each cell i has Ni neighbors. As
we noted earlier, the slope from
cell i to neighbor cell k is de-
fined as the elevation difference
between the nodes divided by
the horizontal distance between
them (Fig. 2). Thus, one can
define a slope for every edge that connects each pair of nodes. There is a slope value for
each of the Ni neighbors of node i. The flow direction is assigned as the steepest of these
slopes.

Single-direction flow algorithms have advantages and disadvantages. Some models use a
multiple flow direction approach to represent the divergence of flow on relatively gentle
slopes or divergent landforms (Fig. 3). This is most appropriate for models that operate
on a grid resolution significantly smaller than the length of a hillslope. When grid cells are
relatively large, conceptually each cell contains a primary channel, narrower than the cell,
that is tracked.

Exercise 4: Flow Over Noisy, Inclined Topography.

(1) In the terminal window, navigate to the Network1 folder and run the input file by
typing:

child network1.in

(2) In Matlab, navigate to the Network1 folder

In Matlab, type:

• figure(1), clf

• colormap pink

• a = cread( ’network1.area’, 1 );

• ctrisurf( ’network1’, 1, a );
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• view( 0, 90 ), shading interp, axis equal

The networks are formed because of noise (±1 m in this case) in the initial surface,
which causes flow to converge in some places.

The simplest method for computing discharge from drainage area is to simply assume (1) all
rain runs off, and (2) rain lasts long enough that the entire drainage network is in hydrologic
steady state. In this case, and if precipitation rate P is uniform,

Q = PA (11)

A number of landscape modeling studies have used this assumption, on the basis of its
simplicity, even though it tends to make hydrologists faint! The simplicity is indeed a
virtue, but one needs to be extremely careful in using this equation, for at least three
reasons. First, obviously Q varies substantially over time in response to changing seasons,
floods, droughts, etc. We will return to this issue shortly. Second, there is probably no
drainage basin on earth, bigger than a hectare or so, from which all precipitation runs
off. Typically, evapotranspiration returns more than half of incoming precipitation to the
atmosphere. Third, hydrologic steady state is rare and tends to occur only in small basins,
though it may be a reasonable approximation for mean annual discharge in some basins.

River discharge, whether defined as mean annual, bankfull, mean peak, or some other way,
often shows a power-law-like correlation with drainage area. Some models take advantage
of this fact by computing discharge using an empirical approach:

Q = bAc (12)

where c typically ranges from 0.5-1 and b is a runoff coefficient with awkward units that
represents a long-term “effective” precipitation regime.

CHILD’s default method for computing discharge during a storm takes runoff at each cell
to be the difference between storm rainfall intensity P and soil infiltration capacity I:

Q = (P − I)A (13)

which of course is taken to be zero when P < I.

5.2. Shallow-Water Equations. Some landscape models are designed to address relatively
small-scale problems such as channel initiation, inundation of alluvial fan surfaces, channel
flood flow, etc. In such cases, the convergence and divergence of water in response to evolving
topography is an important component of the problem, and is not adequately captured by
the simple routing schemes described above. Instead, a tempting tool of choice is some
form of the shallow-water equations, which are the vertically integrated form of the general
(time-averaged) viscous fluid-flow equations. One form of the full shallow-water equations
is:

∂η

∂t
= i−

(
∂qx
∂x

+
∂qy
∂y

)
(14)

∂qx
∂t

+
∂qxu

∂x
+
∂qyu

∂y
+ gh

∂h

∂x
+ gh

∂η

∂x
+
τbx
ρ

= 0 (15)

∂qy
∂t

+
∂qyv

∂y
+
∂qxv

∂x
+ gh

∂h

∂y
+ gh

∂η

∂y
+
τby
ρ

= 0 (16)
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Figure 4. Simulated water surface elevations and flow depth (Birnir
et al., 2001).

These equations express continuity of mass, x-directed momentum, and y-directed momen-
tum, respectively. They are challenging and computationally expensive to integrate numer-
ically in their full form. However, there are several approximate forms that are commonly
used, including the non-accelerating flow form (in which convective accelerations are assumed
negligible) and the kinematic-wave equations (in which gravitational and friction forces are
assumed to dominate). An example of use of the shallow-water equations in a landform evo-
lution model can be found in the work of T.R. Smith and colleagues (Fig. 4). Various forms
of the shallow-water equations can often be found in hydrologic models, and sometimes in
soil-erosion models (e.g., Mitas and Mitasova, 1998).

5.3. Cellular Automata. Some models use cellular automaton methods to calculate flow
over a cellular topography. These include:

• Chase (1992) precipiton algorithm
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• Crave and Davy (2001) modified precipiton algorithm

• Murray and Paola (1994) multiple-flow-direction river-flow algorithm

• Coulthard et al. (1996) generalization of Murray-Paola for 2D flow (CAESAR model)

5.4. Depressions in the Terrain. What happens when flow enters a topographic depres-
sion? In the real world, three possibilities: complete evaporation/infiltration, formation of
a lake with overflow, or formation of a closed lake. CHILD can be set either to have water
in “pits” evaporate, or to use a lake-fill algorithm to route water through depressions in the
terrain (with no evaporation).

5.5. Precipitation and Discharge. Water supply to the channel network varies dramati-
cally in both time and space, but there is a big gap in time scale between, on the one hand,
storms and floods and, on the other hand, topographic evolution. Many landscape evolution
models have therefore used the “effective discharge” concept, or the idea that there is some
value of discharge that represents the cumulative geomorphic effect of the natural sequence
of storms and floods. Willgoose et al. (1991) used mean peak discharge, but Huang and Nie-
mann (2006) recognized that the return period of effective discharge events is not necessarily
the same at different times and places.

Basically, landscape models tend to use one of four methods:

(1) Steady flow with uniform precipitation or a specified runoff coefficient (effective dis-
charge concept)

(2) Steady flow with nonuniform precipitation or runoff (e.g., orographic precipitation)

(3) Stochastic-in-time, spatially uniform runoff generation

(4) “Short storms” model (Sólyom and Tucker , 2004)

We will not examine all of these in detail. Instead, we will take a brief look at the Poisson
rectangular pulse model implemented in CHILD.

Exercise 5: Visualizing a Poisson Storm Sequence.

(1) In the terminal window, navigate to the Rainfall1 folder and run the input file
by typing:

child rainfall1.in

(2) In Matlab, navigate to the Rainfall1 folder

In Matlab, type:

• figure(1), clf, cstormplot( ’rainfall1’ );

• figure(2), clf, cstormplot( ’rainfall1’, 10 );

The first plot shows a 1-year simulated storm sequence; the second shows just the first
10 storms.
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The motivation for using a stochastic flow model is (1) that nature is effectively stochastic,
and (2) variability matters when the erosion or transport rate is a nonlinear function of flow.
For more on this, see Tucker and Bras (2000); Snyder et al. (2003); Tucker (2004), and
DiBiase and Whipple (2011).

5.6. Remarks. Landscape evolution models can be, and have been, used to study climate
impacts on erosion, topography, and mountain building. But be careful—climate and hy-
drology amount to much more than a “sprinkler over the landscape.”

6. Hydraulic Geometry

Channel size, shape, and roughness control delivery of hydraulic force to the bed and banks.
Most landscape models either implicitly assume constant width (practical but dangerous)
or use the empirical relation W = KwQ

b, where b ≈ 0.5. Models with time-varying dis-
charge must also specify how width varies at a point along the channel as Q rises and falls.
Width-discharge scaling is practical but incomplete, because channels may narrow or widen
downstream in concert with variations in incision rate, as observed in Italy (Whittaker et al.,
2007), Nepal (Lavé and Avouac, 2001), New Zealand (Amos and Burbank , 2007), Taiwan
(Yanites et al., 2010), and California (Duvall et al., 2004). Some models have begun to
explore these sensitivities (Wobus et al., 2006, 2008; Attal et al., 2008; Turowski et al., 2009;
Yanites and Tucker , 2010), but full treatment of the channel geometry adjustment problem
is a frontier area.

7. Erosion and Transport by Running Water

There are several competing models for erosion by channelized flow. Detachment-limited
models assume that eroded material leaves the system without significant re-deposition and
that lowering of channels is limited by the ability of the stream to detach material from the
bed (Howard , 1994; Whipple and Tucker , 1999). Transport-limited models assume plentiful
supply of loose sediment and that lowering of channels is limited by the stream’s capacity
to transport sediment (Willgoose et al., 1991; Whipple and Tucker , 2002). In simple hybrid
models, lowering may be limited either by excess transport capacity or by detachment rate,
depending on local sediment supply and substrate resistance (Tucker et al., 2001b; Whipple
and Tucker , 2002). With the undercapacity concept, detachment rate depends on surplus
transport capacity (Beaumont et al., 1992). In the saltation-abrasion model, detachment is
driven by grain impacts and limited by sediment shielding (Gasparini et al., 2007; Whipple
and Tucker , 2002).

7.1. Detachment-Limited Models. On a cohesive or rock bed with a discontinuous or
absent cover of loose sediment, detachment of particles from the bed may be driven primarily
by hydraulic lift and drag (“plucking”). Most models assume that the rate of detachment
(or more generally the capacity for detachment) depends on excess bed shear stress:

Dc = Kb (τ − τc)pb , or alternatively, Dc = Kb (τ pb − τ pbc ) (17)

where τ is local bed shear stress, τc is a threshold stress below which detachment is ineffective,
Kb is a constant, and pb is an exponent.
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Bed shear stress fluctuates in space and time, but is often treated using the cross-sectional
average, which in turn is based on a force balance between gravity and friction.

Some models assume that the detachment rate depends on stream power per unit width,
ω = ρg(Q/W )S:

Dc = Kb

(
Q

W
S − Φc

)pb

(18)

where Φc is, again, a threshold below which detachment is ineffective. Stream power per unit
width turns out to be proportional to τ 3/2, so the two erosion formulas are closely related
(Whipple and Tucker , 1999). In the following example, we will use the unit stream power
formula with Φc = 0.

Exercise 6: Detachment-Limited Hills and Mountains.

(1) In the terminal window, navigate to the Dlim folder and run the input file by
typing:

child dlim.in

The 3 m.y. run should take about 20 seconds.

(2) In Matlab, navigate to the Dlim folder

In Matlab, type:

• figure(1), clf, colormap jet

• cmovie( ’dlim’, 31, 3e4, 3e4, 1e3, 500 );

• figure(2), clf

• csa( ’dlim’, 31 ); % Shows slope-area graph

Notice that the landscape has come close to a state of equilibrium between erosion and
relative uplift. The resulting terrain has about 200 m of relief over a 30 km half-width
mountain range—more Appalachian than Himalayan. Notice that the log-log slope-area
graph shows a straight line, indicating a power-law relationship. This is exactly to be
expected, and we can predict the plot slope and intercept analytically. Finally, note
the points on the upper left of the graph. These “first order” cells, at about 2500 m2

contributing area, have slopes less than 10%. They represent embedded channels, not
hillslopes, which are too small to resolve at this grid spacing.

Now, what happens when we increase the relative uplift rate?

(1) Run the dlimC1.in input file by typing:

child dlimC1.in

This run starts off where the previous one ended, but with a 10× higher rate of
relative uplift.

In Matlab, type:

• figure(1)

• cmovie( ’dlimC1’, 31, 3e4, 3e4, 1e4, 5000 ); % 10× vertical scale
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• figure(2)

• hold on, csa( ’dlimC1’, 31, ’r.’ ); hold off

Because we are using a slope-linear detachment law, a 10× increase in relative uplift
rate leads to a 10× increase in relief. Notice that the points have shifted upward by a
factor of 10 on the slope-area graph.

We still do not see any hillslopes, because the scale of landscape dissection is too fine
for the model to resolve.

Exercise 7: Zooming in to the Hillslopes.

Next, we will “zoom in” by repeating the dlim run but with a twenty-fold decrease in
domain size and model cell size.

(1) Run the dlim small.in input file by typing:

child dlim small.in

This run is identical to dlim but with a domain of 1.5 by 1.5km and ∼25m wide
cells, instead of 30x30km and ∼500m cells.

In Matlab, type:

• figure(1)

• cmovie( ’dlim small’, 31, 1.5e3, 1.5e3, 500, 200 );

• figure(2)

• hold on, csa( ’dlim small’, 31, ’g.’ ); hold off

Note how the hillslopes become evident in the topography. In the slope-area plot,
the points seem to continue the trend of the coarser-scale run, but somewhat shifted
upward. Can you guess why they are shifted upward? (The answer is subtle, and lies
hidden in dlim small2.in).

Exercise 8: Knickzones and Transient Response.

For the next exercise, we return to our earlier dlimC1 run and plot a representative
stream profile at different times, to look at how the profile responds to the increased
rate of relative uplift.

In Matlab, type:

• figure(1), clf

• [d,h,x,y] = cstrmproseries( ’dlimC1’, 10, 15000, 29000 );

This command traces the stream profile starting from x = 15 km, y = 29 km. It
will plot the first 10 profiles.

• figure(2), clf, plot( x, y )

This shows the horizontal trace of the stream course.



16 G.E. TUCKER & S.T. LANCASTER

During the period of transient response, the stream profile shows a pronounced con-
vexity, or knickzone, along the profile. The knickzone marches upstream through time.
This pattern is characteristic of the “stream power” erosion law, which is actually a
form of wave equation.

7.2. Transport-Limited Models. We next explore the dynamics of landscapes and net-
works with transport-limited models. One caution as we do so: we will assume that channel
width is independent of grain size, slope, etc.

Exercise 9: A Pile of Fine Sand.

(1) In the terminal window, navigate to the Tlim folder and run:

child tlim1.in

The 1 m.y. run should take about 2 minutes.

(2) In Matlab, navigate to the Tlim folder

In Matlab, type:

• figure(1), clf

• cmovie( ’tlim1’, 21, 3e4, 3e4, 40, 10 );

• figure(2), clf

• csa( ’tlim1’, 21 ); axis([1e-1 1e3 1e-4 1e-3])

In this run, we are effectively assuming that 0.1 mm sand moves as bed-load, accord-
ing to a Meyer-Peter and Mueller-like transport formula. The landscape takes on an
effectively uniform and very shallow gradient, on the order of 3× 10−4.

Exercise 10: A Pile of Cobbles.

Now let’s try the same experiment with 5cm cobbles.

(1) Run:

child tlim2.in

The 3 m.y. run should take about 2-3 minutes.

In Matlab, type:

• figure(1), clf

• cmovie( ’tlim2’, 31, 3e4, 3e4, 1000, 300 );

• figure(2)

• hold on, csa( ’tlim2’, 31, ’r.’ ); hold off

• axis([1e-1 1e3 1e-4 1e-1])

Lesson: grain size matters!

But let’s remember the caveat that channel width matters too, and we haven’t taken
that into account with these simple runs. Also, Nicole Gasparini’s work (Gasparini
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et al., 1999, 2004) tells us that channel concavity is less sensitive to grain size when
there is a mixture of sizes available to the river.

Optional exercise: Make a copy of tlim2.in and configure it to re-start from tlim2

but with a higher uplift rate. Use the Matlab script cstrmproseries to plot fluvial
profiles undergoing transient response. How do these compare with the detachment-
limited model?

7.3. Hybrid Model: Combining Detachment and Transport. Next, we’ll look at
a more complex situation with simultaneous erosion and sedimentation, and simultaneous
detachment-limited and transport-limited behavior. In this case, we use a fluvial model in
which erosion rate can be limited either by transport capacity or by detachment capacity,
depending on their relative magnitudes:

Ei =

{
Qc−

∑Ni
j=1 Qsij

Λi
if

Qc−
∑Ni

j=1 Qsij

Λi
< Dc

Dc otherwise
(19)

Exercise 11: Erosion and Deposition, Together at Last.

(1) In the terminal window, navigate to the Hybrid folder and run:

child erodep1.in

The 1 m.y. run should take about 5 minutes (but of course you can peek at earlier
time steps while the run is going, by reducing the number of frames in your movie).

In Matlab, navigate to the Hybrid folder and type:

• figure(1), clf

• cmovie( ’erodep1’, 21, 6e4, 6e4, 4000 );

Here we have a block rising at 1 mm/yr and an adjacent block subsiding at 0.25 mm/yr.
Uplift and subsidence shut down after 500 ky. The subsiding block forms a large lake
that gradually fills in with fan-deltas.

7.4. Other Sediment-Flux-Dependent Fluvial Models. We won’t take the time to
address some of the other models, including

• “Under-capacity” models (detachment rate depends on degree to which sediment flux
falls below transport capacity), and

• Saltation-abrasion models (detachment rate driven by particle impacts, and limited
by alluvial shielding of bed)

Gasparini et al. (2007) explore the behavior of these models with CHILD simulations.

8. Multiple Grain Sizes

Although we won’t explore the effects of including multiple grain sizes of sediment in trans-
port, grain size introduces some interesting issues, including:

• Bed armoring and its impact on transport rates
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• Downstream fining

• Abrasion and lithologic controls

9. Exotica

Landscape evolution models include more than diffusion and stream-power models:

• Stream meandering in the context of landscape evolution and valley stratigraphy
(Clevis et al., 2006, a,b).

• Vegetation, including both grass (Collins et al., 2004; Istanbulluoglu and Bras , 2005)
and trees (Lancaster et al., 2003)

• Alternate forms of mass wasting, including landslides and debris flows (Densmore
et al., 1998; Lancaster et al., 2003; Istanbulluoglu et al., 2005)

• Knickpoints, hanging valleys, and plunge pools (Flores-Cervantes et al., 2006; Crosby
et al., 2007)

• Glaciation (Herman and Braun, 2006; Herman et al., 2007; Herman and Braun, 2008)

10. Forecasting or Speculation?

Some mathematical models in the physical sciences have such firm foundations that they can
be relied upon to forecast the behavior of the natural world. For example, laws of motion
of objects in a vacuum are absolutely reliable (as long as their speed is much less than
that of light). The same can be said for numerical solutions to these equations, provided
the solution is reasonably accurate. For these kinds of model, the verb “to model” means
to calculate with high reliability what would happen under a particular set of initial and
boundary conditions.

At the other end of the spectrum, we have mathematical models that are essentially tentative
hypotheses. Such models are often based on intuition about a physical system, and represent
a sort of educated guess about the quantitative relationships between things. For example,
when Ahnert (1976) presented his inverse-exponential equation for regolith generation from
bedrock, he was essentially expressing a conceptual hypothesis in mathematical terms. For
these models-as-hypotheses, the phrase “to model” means to perform a quantitative “what
if” experiment, asking the question: what kinds of pattern would I see if my hypothesis were
correct? Comparing the prediction with observations provides a test of the hypothesis.

One can find many models that fall between these extremes. There are models that are based
on well-known physics, but which are forced to use approximations of unknown accuracy in
order to solve the governing equations. For example, climate models typically use simple
parameterization schemes to represent convective mass and energy transport. Then too there
are models that combine basic physical principles with elements of intuition, empiricism, and
approximation. Arguably, many sediment-transport laws fall into this category: they are
based on firm mechanical foundations (the force balance on a sediment grain) but also rely
on strong approximations of factors like grain geometry, local flow velocity, and so on.
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By now, it should be obvious that landscape evolution models also fall somewhere between
the end-member cases of “model as truth” and “model as speculative hypothesis.” As we
have seen throughout this course, there is a varying degree of experimental and observational
support for the individual transport, weathering and erosion laws that go into a typical
landscape model. In that sense, then, these models amount to more than just speculation.
But equally there is still an element of speculation behind many of the process laws used
in landscape models. Also, the process laws and algorithms represent a significant amount
of upscaling in space and (especially) time. For example, the use of a steady precipitation
rate as a proxy for the natural sequence of flows in a river channel represents a major
approximation. For these reasons, we believe that three of the most important frontiers
in landscape evolution research are (1) continuing to test individual process laws in the
field and lab, (2) testing whole-landscape models using natural experiments, and (3) using
mathematics, computation and experiments to study how the rates of various processes scale
upward in time and space, and how these can be effectively parameterized.

11. Ten Commandments of Landscape Evolution Modeling

(1) Thou shalt not use a model without understanding the ingredients therein.

(2) Be thou ever mindful of uncertainty.

(3) Thou shalt use thy model to develop insight.

(4) Thou shalt take delight when thy model surprises thee.

(5) Thou shalt kick thy model hard, that it may notice thee (an injunction borrowed
gratefully from the 10 Climate Modeling Commandments).

(6) Thou shalt diagnose the reasons for thy model’s behavior.

(7) Thou shalt conduct sensitivity experiments and “play around.”

(8) Thou shalt use thy model to discover the necessary and sufficient conditions needed
to explain thy target problem.

(9) If thou darest use a model to calculate what happened in your field area in the past,
thou shalt find a way to test and calibrate it first.

(10) If thou darest to predict future erosion, thou shalt heed the previous commandment
ten times over (but thou mightest point out to skeptics that a process-based prediction
is usually better than one based on pure guesswork, provided that commandment #2
is obeyed).
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