Quantifying variability in streamflow distributions to understand the relationships .
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Experimental Design o Fractional erosivity is highest (high- and low-
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0 Model Parameters Channel Concavity Fluvial Relief (FR)/T major influence on discharge variability in

wet climates (0°, 10° and 40° S), and on
mean discharge in dry climates (20° and

30°S).

Run time 275 Myr 0 Concavity is high in simulations with lower mean

0 Fluvial relief is higher in simulations with lower

discharge. mean discharge (10°, 20° and 30°S).
0 Discharge variability has little influence on concavity.

Time step 100 yr
Bedrock erodibility (k) 1.4x107° m s? kg

High-topography climates are more erosive,
as a result, channel concavity and fluvial relief
are both lower in these experiments.

- 0 Fluvial relief is also higher in simulations with
- Similar C values produce a large range of more dischare variability.

concavity values.

Threshold shear stress (7 ) 0.01 Pa!
Uplift Rate 0.1 mm yr!




