Quo vadis ecosystem? Insights from ecological modelling and systems ecology

Brian D. Fath

Professor, Biology Dept., Towson University, USA

Research scholar, International Institute for Applied Systems Analysis, Austria

Editor, Ecological Modelling Journal

INTERNATIONAL SOCIETY FOR ECOLOGICAL MODELLING

- Formed by Sven Jørgensen, in 1970s as companion to the journal *Ecological Modelling*.
- Over 300 members-based on conference attendance
- Chapters in North America, Europe, Asia, and Africa

The International Society for ECOLOGICAL MODELLING GLOBAL CONFERENCE 2016

8-12 MAY 2016 TOWSON UNIVERSITY, MD, USA

> Abstract Submission

DEADLINE 16 October

2015

EARLY

REGISTRATION

Deadline

18 December

2015

THEMES

- Dynamic Ecological Simulation Models (aquatic, terrestrial, energetics, biogeochemical, etc.)
- Ecological Modelling and Environmental Management (Risk assessment, Flow Analysis, Sustainability, Ecotoxicology, Monitoring and Planning)
- Modelling Coupled Natural and Social Systems
 (Socio-Ecological, Urban, Integrated Assessment)
- Modelling of Ecosystem Services
- Biodiversity and Conservation Modelling
- Ecological Landscape and Land Use Change Modelling
- Ecological Modelling for Climate Change
- Network Modelling
- Systems Ecology

ORGANIZED BY:

IN ASSOCIATION WITH:

ISEM SOCIETY FOR ECOLOGICAL MODELLING SUPPORTING PUBLICATION:

www.isemconference.com

IIASA's Young Scientists Summer Program (YSSP)

- > Ph.D. students
- ➢ June 1 − August 31
- Independent Research mentored by IIASA scientists
- Funded by NMO & other sources

January application deadline

Objectives

- Ecosystem Dynamics
 Openness
 Complexity
 Ecological goal functions
 - □ Adaptive cycle
 - Collapse response
 - □ Future research

Open Systems

Open systems connect to their environment through both inputs and outputs

Thermodynamically, Open Systems

...build and maintain order and organization by taking in high quality energy, using it, and passing degraded energy outside of the system.

Ecosystem Input Constraints

- Solar radiation
- Global carbon cycle
- Rate of nutrient cycling
- Rate of hydrological cycle

Ecosystem Output Constraints

- Rate of decomposition
- Rate of accumulation of unwanted byproducts

Ecosystems have evolved and developed within these input-output environmental constraints.

What patterns of organization and complexity arise in ecosystems?

Ecosystems are dynamic

Biological systems are characterized by a capacity for *directional change* – the cumulative manifestation of positive feedback.

Succession – ordered pattern of growth and development

Increase in complexity and order as the result of controlled growth – decrease internal entropy

Secondary succession – reestablishment of an ecosystem from the remnants of a previous biological community following disturbance

Logistic growth from early to late successional stages

Extremal Concepts

- Can extremal principles contribute to better understanding and management of environmental Complex Adaptive Hierarchical Systems, and what is their potential for future research strategies?
- What are the salient extremal principles involved in ecological processes, and how are they interrelated?

Trends to be expected in ecosystem development (Odum 1969)

Ecosystem Attribute	Developmental Stage	Mature Stage
Gross production/community respiration (P/R ra Gross Production/standing crop biomass (P/B r Biomass supported/unit energy flow (B/E ratio) Food chains	-	~1 low high weblike
Nutrient cycling Mineral cycles Nutrient exchange rate Nutrient conservation	open rapid poor	closed slow good
Overall homeostasis Stability (resistance to external perturbations) Entropy Information	poor high low	good low high

Bioenergetic model of succession

In early stages of succession, P=R and excess is channeled into growth and accumulation of biomass.

Negative feedback maintains steady state, with little or no change in biomass Increase Rapacity and complexity of the energy storage compartments (total biomass of all species and trophic levels) as well as the complexity of energy transfer pathways.

Fig. 25.17 Changes in gross (P_g) and net (P_n) production, respiration (*R*) and biomass (*B*) through succession.

Complexity

Increase in complexity and order as the result of controlled growth.

Environmental systems are far-fromequilibrium systems.

How do we measure this "complexity"?
 Extensive variable * Intensive variable
 How much * What characteristics
 Quantity * Quality

I=PAT Env. Impact = Population x [Affluence x Technology] (how much) x [(use/person) x (impact/use)]

In ecological systems

Pioneer researchers have tried several methods
Energy times "quality"

Emergy (HT Odum):

□ Ascendency (Ulanowicz):

Growth \rightarrow *Quantitative* increase **Development** \rightarrow *Qualitative* increase

"We must realize that growth and development are two very different things. You can develop without growing and vice versa."

Tibor Vasko, 2009, www.solon-line.de/interview-with-tibor-vasko.html

ECOLOGICAL GOAL FUNCTIONS

- 1. **Maximize Power** (Lotka 1922, Odum and Pinkerton 1955) Increase in the internal energy flow: max(TST)
- 2. Maximize Exergy Storage (Jørgensen-Mejer 1979) Biomass storage and information increase: max(TSS)
- 3. Maximize Dissipation (Schneider-Kay 1994) Increase in dissipative flows: max(Total System Export)
- 4. **Maximize Cycling** (Morowitz 1968) Increase in cycling: max(Total System Cycling)
- 5. Minimize Specific Dissipation (Prigogine 1955) Decrease in the respiration to biomass ratio: min(TSE/TSS)
- Maximize Residence Time (Cheslak and Lamarra 1981) Increase time lags to maintain the energy stores longer: max(τ)

Complementarity of Ecological Goal Functions

Flow Partitioning

Network representation of flow and storage partitioning for any (i,j) pair in the system.

	FLOW pair-wise interactions	STORAGE pair-wise interactions
mode 1 (first passage)	$\mathbf{f_{ij}}^{(1)} = \left(\frac{\mathbf{n_{ij}}}{\mathbf{n_{ii}}} - \delta_{ij}\right) \mathbf{Z_{j}}$	$\mathbf{x}_{ij}^{(1)} = \left(\frac{\mathbf{q}_{ij}}{\mathbf{q}_{ii}} - \delta_{ij}\right) \mathbf{z}_{j} \Delta t$
mode 2 (cyclic)	$f_{ij}^{(2)} = \frac{n_{ij}}{n_{ii}} (n_{ii} - 1) z_j$	$x_{ij}^{(2)} = \frac{q_{ij}}{q_{ii}} (q_{ii} - 1) z_j \Delta t$
mode 3 (dissipative)	$f_{ij}^{(3)} = \left(\frac{n_{ij}}{n_{ii}} - \delta_{ij}\right) Z_j$	$\mathbf{x}_{ij}^{(3)} = \left(\frac{q_{ij}}{q_{ii}} - \delta_{ij}\right) \mathbf{z}_{j} \Delta t$

Goal	Ecological	Network Parameter	Network Analysis
Function	Representation		Formulation
max	max(TST)	$TST = f^{(1)} + f^{(2)}$	$TST = \sum \sum (n_{ij})z_j$
power			
max exergy	max(TSS)	$TSS = x^{(1)} + x^{(2)}$	$TSS = \sum \tau_i(n_{ij})z_j$
storage			
max	max(TSE)	$TSE = f^{(3)}$	$TSE = \sum \sum (n_{ij}/n_{ii})z_j$
dissipation			
max	max(TSC)	$TSC = f^{(2)}$	TSC = $\sum (n_{ij}/n_{ii})(n_{ii}-1)z_j$
cycling			
min	min(TSE/TSS)	$TSE/TSS = f^{(3)}/$	TSE/TSS = $\sum \sum ((n_{ij}/n_{ii})z_j)/x_{ij}$
specific		$(x^{(1)}+x^{(2)})$	$=\sum \sum 1/(\tau_i n_{ii})$
dissipation			
max	max(TSRT)	$TSRT = \tau$	$TSRT = \sum x_i / (n_{ij}) z_j$
residence			$=\sum\sum au_i$
time			

Conclusion

Goal functions are consistent and mutually implicating

Three common properties:

- 1) First passage flow
- 2) Cycling
- 3) Retention time

Get as much as it can (maximize first passage flow); Hold on to it for as long as it can (maximize retention time); and If it must let it go, then try to get it back (maximize cycling).

Four types of Ecosystem Growth and Development

- 0. *Boundary Growth:* Low-entropy energy enters the system.
- I. *Structural Growth:* Increase in quantity of biomass as the number and size of components in the ecosystem increase.
- II. *Network Development:* Change in system connectivity transactions, which results in more cycling.
- III. Information Development: Qualitative change in system behavior to more energetically efficient ones.

Purpose: to investigate behavior of ecological goal functions during different growth and development stages.

Hypothesis 1: Storage and throughflow increase during all stages.

Hypothesis 2: Exergy degradation increases initially, then levels off.

Ecosystem	% exergy use*	exergy storage	Empirical data support the
Quarry	6	0	theory
Desert	2	0.07	uncery
Clear-cut	49	0.59	80 -
Grassland	59	0.94	60 -
Fir Plantation	70	12.7	(%) 70 40 -
Natural Forest	71	26	Exergy utilized (%)
Old deciduous	72	38	
forest			0 20 40 60 Exergy
Tropical rain forest	70	64	(MJ/m ²)

*Kay and Schneider 1992

Debeljak, 2004

Network models representing different growth & development stages

Ecosystem Development Trends

Figure Comparison	Specific entropy (output/storage)	Energy throughflow	Exergy storage (biomass)	Exergy degradation	Retention time
Fig. 7a→7b	0.30→0.30	16.4→32.8	16.4→32.8	5→10	3.3→3.3
Growth form I	(unchanged)	(increased)	(increased)	(increased)	(unchanged)
Fig. 7b→7c	0.30→0.28	32.8→35.8	32.8→35.8	10→10	3.3→3.6
Growth form II	(decreased)	(increased)	(increased)	(unchanged)	(increased)
Fig. 7c→7d Growth form III	0.28→0.21 (decreased)	35.8→47.1 (increased)	35.8→47.1 (increased)	10→10 (unchanged)	3.6→4.7 (increased)

	Boundary G&D	Structural G&D	Network G&D	Information G&D
	Biomass Throughflow	Biomass Maintenance	Cycling	Information
Specific entropy	\leftrightarrow	\leftrightarrow	\downarrow	\downarrow
Energy throughflow	ſ	\uparrow	1	1
Exergy degradation	↑	1	\leftrightarrow	\leftrightarrow
Exergy storage	1	1	1	\uparrow
Retention Time	\leftrightarrow	\leftrightarrow	1	\uparrow

System moves to more conservative strategies – storage, throughflow, cycling, and retention time increase

SUBSISTANCE STRATEGIES

© WWW.URBANSCOUT.ORG 2007

Sketch of the dynamics of ecosystem variables on two scales, both variables are influenced by the disturbances (A and B) with different magnitudes (C and D) and durations (H and J), and both variables are due to orientor dynamics during the phases G, I and K.

Adaptive Cycle: Holling's 4-stage model of ecosystem dynamics

Logistic growth only captures part of the cycle

rs.resalliance.org/wp-content/uploads/2007/02/4box-adaptive-cycle.gif

Ecosystem succession in the collapse dynamic

Benefits of collapse

Schumpeter labeled the collapse, "creative destruction", since it allowed for new configurations and innovation opportunities

Developmental opportunities result from the collapse

number of connections

Long-term succession of ecosystems: small-scale disturbances may support the development of the overall system.

Synthesis model

Conclusions

- Ecological systems are open systems that use resource inflows to increase complexity and move further from thermodynamic equilibrium
- Some orientors can track the dynamic development phase
- Systems go through a complex cycle of growth, development, stability, collapse and reorganization.
- Collapse is a normal response of the long term dynamic
- Understanding ecosystem dynamics, design, and function may help manage socio-economic systems

Future research in ecosystem dynamics and ecological modelling

- Individual based models
- Socio-economic-ecological models
- Spatially explicit and land use models
- Climate factors as drivers and coupled processes

THANK YOU FOR YOUR ATTENTION

