
A Brief Introduction to
the CSDMS Initiative

Dr. Scott Peckham
Chief Software Architect for CSDMS

October 26, 2007

csdms.colorado.edu

CUAHSI Fall 2007
Regional Meeting
Boise, Idaho

What is CSDMS ?
• Stands for “Community Surface Dynamics Modeling System”

(acronym can be pronounced “systems” or spelled out)

• A recently-awarded NSF cooperative aggreement, initially for 5
years, with Prof. James Syvitski as PI and Executive Director

• An effort to bring together a diverse community of surface
dynamics modelers and model users, as has been done
successfully in other communities (e.g. climate modeling)

• About 140 members (so far) divided into 5 working groups, with
governance by Executive & Steering committees, and support
from NSF/EAR/OCE, USGS, NOAA, and others

• A facility located at the University of Colorado in Boulder, with a
staff of 7 to 10 people

Key Goals of the CSDMS
• Promote code sharing and re-use (open source)
• Develop a review process for contributions
• Promote recognition of contributors
• Develop a “library” of low-level software tools and

higher-level models that can be linked as easily
as possible into new applications

• Provide resources to simplify the efforts of
surface dynamics modelers

• Provide an organized, searchable repository of
surface dynamics models and tools

Some of the Key Properties of Surface Systems

Diversity of Existing Modeling Efforts

Tentative Functional Specs
for the CSDMS

Support for multiple operating systems
(especially Linux, Mac OS X and Windows)

Support for parallel (multi-proc.) computation (via MPI standard)
Language interoperability (e.g. CCA is language neutral) to support

code contributions written in C, Fortran as well as more modern
object-oriented languages (e.g. Java, C++, Python)

Support for both legacy (non-protocol) code and more structured
code submissions (procedural and object-oriented)

Should be able to interoperate with other coupling frameworks
Support for both structured and unstructured grids
Platform-independent GUI (e.g. via wxPython)
Large collection of open-source tools

ESMF (Earth System Modeling Framework)
www.esmf.ucar.edu, maplcode.org/maplwiki

PRISM (Program for Integrated Earth System Modeling)
www.prism.enes.org (uses OASIS4)

OpenMI (Open Modeling Interface)
www.openmi.org

CCA (Common Component Architecture)
www.cca-forum.org,
www.llnl.gov/CASC/components/babel.html

Others: GoldSim (www.goldsim.com) commercial
FMS (www.gfdl.noaa.gov/~fms) GFDL

“Coupling Frameworks”

Widely used by U.S. climate modelers
Based on Fortran90 (efforts underway for C coupling)
Components follow the Initialize, Run, Finalize scheme
Has a new development tool called MAPL
Started with NASA, now has buy-in from NOAA, DoD,

DOE, NSF. May be adopted by CCSM; see:
www.ccsm.ucar.edu/cseg/Projects/Working_Groups/soft/esmf

ESMF Infrastructure
Data Classes: Bundle, Field, Grid, Array

Utility Classes: Clock, LogErr, DELayout, Machine

ESMF Superstructure
AppDriver

Component Classes: GridComp, CplComp, State

User Code

Overview of ESMF

• Parallel-computing friendly (MPI)
• Compatible with PRISM & CCA.
• Many useful tools in its Infra-

structure & Superstructure
• Mainly structured grids so far

Developed by hydrologic community in Europe with
corporate buy-in (e.g. Delft Hydraulics)

Based on Microsoft’s C# (similar to Java) and support
for Java is under development by HydroliGIS (Italy)

Components follow the Initialize, Run, Finalize scheme
Emphasizes support for data formats (e.g. WML)
Currently incompatible with non-Windows computers,

so language and platform specific
Designed for a single-processor environment
Funding future is currently uncertain
Does not seem to have the maturity or buy-in of ESMF

& CCA.

Overview of OpenMI

Widely used at DOE labs (e.g. LLNL, ANL, Sandia) for
a wide variety of projects (e.g. fusion, combustion)

Language neutral; Components can be written in C,
C++, Fortran 77-95, Java, or Python; supported via a
compiler called Babel, using SIDL / XML metadata

Interoperable with ESMF, PRISM, MCT, etc.
Has a development tool called BOCCA (& Eclipse)
Similar to CORBA & COM, but science app support
Can be used for single or multiple-processor systems,

distributed or parallel, MPI, high-performance (HPC)
Structured, unstructured & adaptive grids
Has DOE / SciDAC (www.scidac.gov) funding support

Overview of CCA

CBSE = Component-Based Software Engineering

Support for Java & Python makes it possible to add
components with GUIs, graphics or network access
anywhere in the application (e.g. via wxPython).
Python code can be compiled to Java with Jython.
(See www.jython.org for details)

Python is used by Google and is the new ESRI scripting
language. It is entirely open-source and a large
number of components are available (e.g. XML parser)
Currently has over one million users and growing.

Overview of CCA (continued)

is Middleware for HPC

YesNoNoNoComplex Numbers
Open

Source
Closed
Source

Closed
Source

Vendor
Specific

Licensing

No
Limited

No
.NET

Yes
Yes

Yes*
Babel

NoNoBlueGene, Cray,
Linux, AIX, & OS X

LimitedNoFortran
NoNoMulti-Dim Arrays

COMCORBA

2006

“The world’s most rapid
communication among many
programming languages in a
single application.”

0
5

10
15
20
25
30
35
40
45
50

M
ill

io
n

ca
lls

/s
ec

C
O

R
B

A

B
ab

el

.N
ET

C
O

M

Performance (in process)

CCA: The Babel Tool

CCA: The Babel Tool

Language interoperability is a powerful feature of the CCA framework.
Components written in different languages can be rapidly linked with hardly any
performance cost. This allows us to “shop” for open-source solutions (e.g.
libraries), gives us access to both procedural and object-oriented strategies
(legacy and modern code), and allows us to add graphics & GUIs at will.

The CCA framework includes a graphical tool called
Ccaffeine for linking together model components.

CCA: The Ccaffeine Tool

Conclusions
Component-based software design is taking off in
several different scientific communities.

There are a large number of relatively mature and
increasingly user-friendly tools and frameworks for
developing and linking component-based software.

The CCA framework looks particularly promising and is
likely to be adopted by the CSDMS. However, it is
interoperable with ESMF and would also be
interoperable with a Java version of OpenMI.
The Babel tool could potentially add support for C#.

