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Abstract: b e I OW.
On the Colorado River in Grand Canyon National Park, sediment supply may be as
important as water discharge in regulating sediment flux. This condition, known as “supply

1) SETTING

Gage estimates of sediment flux are an imortant tool for quantifying large-scale
geomorphic change. On the Colorado River, estimates of sediment flux are used to
constrain sediment mass-balance in five discrete reaches. Acoustic sediment
monitoring instruments provide reliable estimates of suspended load but bedload is
estimated as a constant 5% of suspended sand load. Here, we utilize a recently
developed bedload model to test this assumption at one monitoring station shown
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limitation”, precludes stable sediment flux rating curves with discharge. Instead, sediment
monitoring programs utilize measurements of acoustic surrogates for suspended sand

oncentration to construct flux-based sediment budgets. These techniques provide accurate
estimates of suspended sand flux, but estimates of total load depend on the assumption that
bedload flux is a constant fraction of suspended sand load. Currently, bedload is treated as a
constant 5% of suspended sand load based on one set of observations
(Rubin 2001).

We test this assumption using a new model for bedload flux (Ashley et al, in prep)
designed to reproduce flow strength and supply-limitation effects using quantities that are
routinely measured at sediment monitoring stations on the Colorado River. This model
indicates that the cumulative bedload flux summed over the existing gage record is
approximately 5% of the cumulative suspended sand flux, but that the instantaneous ratio of
bedload to suspended load ranges from 1% to 75% during this time. Low bedload fractions
occur during floods when the channel is enriched with fine sediment, whereas high bedload
fractions occur during fine-depleted base flows. Sediment budgets are sometimes used to
evaluate the short-term morphodynamic trends associated with individual or seasonal changes
itical to account for bedload variability at

s long-term trends in sediment storage.
er the I td ade was approximate Iy5/ this is not
guaranteed to be the g e bedload fraction reflects the
sediment supply and d h arge g ime wh ch both may e I r time. Dam-regulated water
discharge is the primary tool for enacting management dec th and changing
land use and climate are likely to impact the rate of tributary sand deIivery.
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2)BEDLOAD MODEL

Independent Variables:

Diamond Creek sediment monitoring station (River Mile 225)

Unit water discharge

m*/s]

Reach slope

Median diameter
of bed material

PHYSICS >

(Garcia, 2008;
Wright & Parker,
2004)

Power-law approximation
for underlying physics:

Qo Qo X113
qp X QS22 D,

Qo Qo x23
Cs x Q¥ 522D,

Y Qo X33
Dg ox Q315932 D,

Solve for (p
_»

For more information on

Dependent Variables:

Unit bedload flux

Suspended sand
concentration

Median diameter of
suspended sand

g, = AeP0 QP P2 DB

where A = q,0/Q5 C2 D

modeling, see "Statistical bedload modeling on the

Colorado River in Grand Canyon National Park"” (T3. Advances in River Science in the
Intermountain West I, Thursday May 17 (tomorrow), 9:45 AM)

Measured Bedload Flux

[kg/s]
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@PARAMETER ESTIMATION AND PREDICTION

Parameter estimation and prediction is performed using Bayesian hierarchical linear regression (Gelman et al., 2014). Data collected at our

study site was supplemented by data from seven other sites on other rivers reported by Toffaleti (1968). Bedload flux and the ratio of
bedload to suspended load were then simulated over the full record of predictor variables at our study site.
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@SIMULATED BEDLOAD TIME SERIES EXAMPLES

Compared with estimates obtained from repeat bathymetric surveys of dune migration:
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