COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Appendix 1: Sample Inventory of Modeling Courses

Maureen Berlin and Irina Overeem
July 2010

CSDMS Mission Statement:

The Community Surface Dynamics Modeling System (CSDMS) deals with the Earth's surface - the ever-
changing, dynamic interface between lithosphere, hydrosphere, cryosphere, and atmosphere. We are a diverse
community of experts promoting the modeling of earth surface processes by developing, supporting, and
disseminating integrated software modules that predict the movement of fluids, and the flux (production,
erosion, transport, and deposition) of sediment and solutes in landscapes and their sedimentary basins.

CSDMS Integration Facility staff is interested in making our products and tools accessible to help supplement
existing college courses related to terrestrial, coastal, marine, hydrology, and carbonate topics. Based on a
recommendation from the Education and Knowledge Transfer (EKT) Working Group meeting in Fall 2009,
we conducted a survey of university course catalogs to learn how surface process modeling is currently being
taught. An important caveat is that the results below are only as reliable as the course descriptions in
university catalogs, which may be out of date, incomplete, or inaccurate. However, we posit that instructors
who use modeling would most likely attempt to promote that feature of their course rather than obscure it, in
order to help recruit students.

We targeted members of the Association of American Universities (AAU) (http://www.aau.edu/) to gain a
representative sample of research-intensive universities. Rather than surveying all 63 AAU members, we
chose a representative sample of 306 institutions from this list (Figure 1). We required that either a geology or
civil engineering department was present for each surveyed university. Of the surveyed universities, 16 are
also host institutions of CSDMS members (Figure 1).

68 A 3gi¢:rl;ities e
universities : member
with CSDMS universities
members
(sample
size = 20) (sample
size = 16)

Figure 1. Overlap between AAU universities and CSDMS member universities.

All major regions of the U.S. are represented among the surveyed universities (including one Canadian
university), although the Pacific Coast, Mid-Atlantic, and Midwest regions had higher concentrations, perhaps
indicative of the larger population centers in those areas. Nineteen universities are public funded and
seventeen atre private institutions. The surveyed universities have undergraduate student populations that
range in size from less than 1,000 to over 75,000, and the graduate student populations vary between just over
1,000 to more than 14,000 (Figure 2).

19

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

80,000

70,000

60,000

50,000

40,000

30,000

Number of students

20,000

10,000

¥ Undergraduates

B Graduate Students

12345678 9101112131415161718192021222324252627282930313233343536

Universities

Figure 2. Range of size of student body populations at surveyed universities.

Box 1. Surveyed Universities
Brown University

California Institute of Technology
Carnegie Mellon University

Case Western Reserve University
Columbia University

Cornell University

Duke University

Harvard University

Indiana University (Bloomington)
Towa State University

The Johns Hopkins University
Massachusetts Institute of Technology
McGill University

Michigan State University

New York University
Northwestern University

The Ohio State University

The Pennsylvania State University
Princeton University

Purdue University

Rice University

Rutgers, The State University of New Jersey
Stanford University

Stony Brook University-State University of New
York

Syracuse University

Texas A&M University

Tulane University

The University of Arizona

University at Buffalo, The State University of New
York

University of California, Berkeley

University of California, Davis

University of California, Irvine

University of California, Santa Barbara
University of Colorado at Boulder

University of Florida

University of Illinois at Urbana-Champaign

We reviewed course catalog descriptions and collected basic information such as course name, department,
level, credit hours, and format. If a course was offered in multiple departments, we identified it either with
the main host department, or the first instance of the course in the catalog. We noted any required

prerequisites, programming languages used, and the objectives from the course description. We also tallied
which courses might be especially relevant to any of the CSDMS working groups or focus research groups.

Course titles and keywords that were of interest include:
* modeling of earth surface processes

* GIS/temote sensing

20

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

* quantitative techniques/statistics

* sedimentary geology modeling

* hydrology/glaciology

* fluid dynamics

* groundwater hydrology/groundwater flow modeling/hydrogeology
* global change/climate modeling

We generally excluded those courses that were limited to the following topics, as these seemed peripheral to

the types of modeling tools and educational products that CSDMS is developing:

geophysics/geophysical or geological fluid dynamics/geodynamics

® paleoclimate

* pure computer science (e.g. C programming)

* general physical geology (too generic)

* numerical solutions of partial differential equations/numerical methods

® courses on high performance scientific computing or parallel computing

* statistics/time seties analysis

* finite element modeling of geological materials/geotech/soil mechanics/soil science

* atmospheric modeling/meteorology (unless oceans are mentioned)

* geochemistry

* l-credit seminars or reading seminars

* “Special Topics in...”
the upcoming CU course using CMT, which will be listed under Special Topics)

¢ field courses

For the 36 universities surveyed, we identified 1043 courses that had at least some relevance to CSDMS,

with no course description (these may still be of interest to us, as evidenced by

either in terms of subject matter or in the use of modeling in the earth sciences. Of these courses, 717 were

undergraduate level, 469 were graduate level, and 143 were cross-listed at both levels.

350
300
3
£ 250
3
S 200
)
g 150
E
s 100
= |
T
v .
—_— —_— @ 7] 1) %]
= & s g o = 3 s 8 &8 3
s 5., 5 g ® g8 £ ® _f£ 8
= 22§, 8 8 e 8 = E -2 =
5] £ 5 & 95} (=] o [} =) > I o
= S 3 ¢ = L2, 5] 3 = S S o
2. =90 = 9 E w9 S > == H o=
o s o m = == < =
=~ = = = Bb ~
< S g.£& = 3B Pro O
S 2w E =)) = =
~= gﬁ o = > © D
= 2 < s S S =
(=) 2 = D [« 27
) = < =)
<< = E
2a] =
<<

Figure 3. Frequency of all surveyed courses by university department.

Of the university departments offering CSDMS-televant courses, Geology/Geosciences and

Civil/Environmental Engineering Departments had the most courses (Figure 3). We also tallied which
courses would have content that is relevant to CSDMS Working Groups and Focus Research Groups (and
also mentioned climate, even though that is not a CSDMS group). Many of the surveyed courses can be
connected to the Hydrology and Terrestrial Groups (Figure 4). It is interesting to note that although the

21

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Terrestrial Working Group is the largest in terms of CSDMS membership and number of models, it does not
correspond to the highest number of surveyed courses (Figure 4).

450

400 “ Number of Relevant Courses

350 CSDMS Group Membership

300

¥ Number of Group Models

250

200

100

5°IIII| '
. o B

Terrestrial Coastal Marine Hydrology Carbonate Climate

Figure 4. Comparison of frequency of courses relevant to CSDMS Focus Research Groups and Working
Groups, membership within those groups, and number of group models as of July 2010.

Although CSDMS does currently focus on GIS or remote sensing services, we did tally the use of these
software packages in addition to programming languages. Matlab was the most common language mentioned
in course descriptions, although many Babel-supported languages (Fortran, C/C++, Python, and Java) were
also indicated (Figure 5).

120
100 +—
80
60 -

40 -
20
0 -

Number of courses

Figure 5. Frequency of courses that specified a software package or programming language.
In general, universities with larger undergraduate student body populations had more courses that we tracked

as relevant to CSDMS (Figure 6). This trend did not hold with the graduate student population size (Figure
7).

22

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

On average, for each of the 36 surveyed universities, approximately 29 courses listed in the course catalogs
would have some relevance to CSDMS modeling and educational efforts. The schools with the highest
number of relevant courses were:

Number of courses

60

50

40

30

20

10

X w R? = 0.30825

0 20000 40000 60000 80000 100000

Number undergrad students

Figure 6. Number of surveyed courses vs. number of undergraduate students at each university.

60

40

30

20

Number of courses

10

W oy
X ¥
X ,)
- - X R*=0.05483
¥
X X X P
¥ % Xy
¥ ‘L’_/,—~/"
=2 > <
X X
X
*x L XK Xy
X
X
5000 10000 15000 20000

Number of graduate students

Figure 7. Number of surveyed courses vs. number of graduate students at each university.

University of California, Santa Barbara (55)
University of Colorado, Boulder (54)

Texas A&M (50)

University of Florida (49)

McGill (45)

Purdue, University of California at Davis (41)
Penn State, University of Arizona (40)

“High-Relevance” Courses:
During the process of gathering information from course catalogs, we made special note of courses that have
“high relevance,” based on the following criteria:
“Modeling” is listed in course description
Hands-on activities may be emphasized
Quantitative problem solving using computers
Courses that could directly use or benefit from CMT and other CSDMS Integration Facility products

23

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

We identified 167 courses that are highly relevant to CSDMS. Selected course titles for which the course
descriptions met these criteria include:

Physical Hydrology

Coastal and Ocean Modeling

Groundwater Modeling

Computer Simulations in Earth and Planetary Sciences
Geological Modeling

Sequence Stratigraphy

Sediment Transport and River Mechanics

Advanced Watershed Hydrology

Earth Systems Science

Marine Sedimentology

The course descriptions for these high-relevance courses include some of the following elements:

application of numerical analysis to mathematical modeling in the natural sciences

watershed analysis, watershed hydrology with analytical and numerical models

model building and validation; quantitative problems, forward and inverse modeling; model
construction and simulation; computational analysis

spatial/temporal modeling of water on landscapes

scientific computing with science applications; software development for scientists
environmental fluid mechanics and sediment transport with numerical models

environmental quality numerical modeling

computer simulation models of hydrology; hydrological forecast modeling

quantitative modeling of fluids and sediments; sediment transport

numerical modeling of coasts and oceans; model development for ocean circulation
quantitative surface processes with numerical modeling

simulations of hydrologic cycle; modeling hydrologic response to different climates
mathematical modeling of river and coastal currents

numerical modeling of groundwater flow; subsurface fluid flow; fate and transport of pollutants
lake, river, coastal contaminant transport model development

hydrologic/hydraulic computer modeling; surface water hydrology, floodplain hydraulics; 2D flow
modeling; streamflow modeling

developing numerical geoscience models

use of computer programs for runoff calculation from catchments

simulations of oceanic processes; advanced topics in modeling for ocean and estuarine environments

using existing techniques and codes; numerical design of ocean models
modeling of modern environmental problems

computet-based methods of analysis in geomorphology; numerical models of sediment/debtis flows

hands-on applications using numerical modeling; numerical algorithms
quantitative methods in natural resources and environmental sciences

Most universities have at least a few high-relevance courses, and on average, 15% of surveyed relevant
courses at a given university were classified as highly relevant (Figure 8).

24

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

60

50 | “All courses | |
" ® High relevance
qé 40 — — — 111
=
o
=
S 30 — 41— 1 -
o
£ |
= 20 | i —
) |

1 | 11l y 1

0 -

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
Universities

Figure 8. Frequency of all surveyed courses and high-relevance courses by university.

Civil and Environmental Engineering departments become the most popular, largely due to the presence of
groundwater and surface water modeling courses (Figure 9). From this survey, we can speculate that
hydrology courses represent an opportunity for the immediate or near-term use of CSDMS products, and that
civil/environmental engineering departments may be the most logical host of these courses.

80
%)
8 70
§60
S 50
S
:40
@ 30
=_
£ 20
=
=1 [
0 - —_“l___!'_-ﬁ:— T T T 1
= —_ ® -~ & » -
£ E E 8 ¥ =z 8 ®w & =m 8
= = = =9 =) b= =) Iz
= 3 ep = 5] = = - < = 2
2 & S oo o= @] 2 [=] £ <] =
T EEEr 8 5§ 05 3 E E 3§ £
< j= [wva =) %) = >
= oo 9T = . w» D =] > = = 3
2 =2 =3 s < 2 &} L == < S o
= Es 2 = = = <2 = s =
SX 8% 2 g2 = &S
S=m 8 = g gm &s 2.3
= = —_
= 2] S S)
S = = 3 S =
D > (&) S @
< =)
= £
=
<<

Figure 9. Frequency of high-relevance courses by university department.

The frequency of high-relevance courses was not well-correlated with size of either the undergraduate or
graduate student populations (Figures 10, 11).

25

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

-
S

=
N
x

X R?=0.14677

-relevance courses
=
<)
%

Number of high

BORK X
0 X—X

0 10000 20000 30000 40000 50000 60000 70000 80000 90000
Number undergrad students

Figure 10. Number of high-relevance courses vs. number of undergraduate students for each surveyed
university.

14
12 X

10 X

R? = 0.00692

Number of high-relevance courses

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Number of grad students

Figure 11. Number of high-relevance courses vs. number of graduate students for each surveyed university.

On average, for each of the 36 surveyed universities, approximately 4-5 courses listed in the course catalogs
would be highly relevant to CSDMS modeling and educational efforts. The schools with the highest number
of highly-relevant courses were:

* University of Florida (12)

* CU Boulder, UCSB (11)

* UC Davis (10)

* U. Arizona (9)

* UC Irvine (8)

* U Illinois, Johns Hopkins (7)

* SUNY Stony Brook, Rutgers, Penn State, UC Berkeley, SUNY Buffalo, Texas A&M, MIT (6)

To summarize, hydrology courses (groundwater, surface water) may represent the most immediate
opportunity for use of CSDMS products. Modeling courses may be most common in civil/envitonmental

engineering departments.

We intend to administer a course questionnaire to CSDMS members as a way to validate some of our results.
We also need to consider how these results influence our modeling and educational products.

26

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Appendix 2: CU Modeling Course Use Case
Maureen Berlin
July 2010

GEOL 5700: Surface Process Modeling: applying the CSDMS Modeling Tool
Instructors: Prof. James Syvitski, Dr. Irina Overeem, Dr. Scott Peckham.
2 credits, Fall 2010.

The CSDMS Modeling Tool (paired with the CSDMS wiki website) is used to support a semester-long two-
credit course at the University of Colorado that centers on the use of numerical surface process models and
hydrological models. Participants include three instructors and approximately ten (7) graduate students.
Although the instructors and students will be in the same location during the class meeting times, remote
access to the system and remote collaboration will be a central part of class participation. The course will
involve both lectures and hands-on modeling.

Course Description:

This course aims to familiarize earth sciences and engineering graduate students with a number of numerical
surface process models and hydrological models available through CSDMS and set them up to use these tools
for their own research purposes.

Goal:

At the end of the course, students should be able to design and run simulations for an independently
designed research question within either the hydrological-glaciological, coupled river-delta, or stratigraphic
domains.

Given the short timeline for course development (classes start Aug. 23), this use case was generally written to
correspond with the existing CSDMS cyberinfrastructure (see diagram below):

-CMT and associated help files and VisIt

-directories on beach for sharing and storing files

-CSDMS wiki, including a course page and a discussion page

However, we should not restrict ourselves to this infrastructure in imagining and developing future use cases,
and even here I've identified some capabilities that may or may not be currently in place.

Note that Instructor] and Instructor2 are used interchangeably below. I've also avoided issues of homework
or grading in favor of a more collaborative environment. A key theme to consider throughout is that
students have the tools needed to adequately document their model runs, both to support student
collaboration and instructor verification of completion of assignments.

The “How” following each paragraph attempts to identify the existing capability, or cyberinfrastructure, or
summarize some of the software requirements that need to be put in place.

27

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

CU Modeling Course Cyberinfrastructure

CSDMS Modeling Tool (CMT)

Html help pages

CSDMS Wiki
CSDMS Handbook f -
e Tool for accessing
web data
Vislt
C<?urse .page | visualization
Discussion page tool

Development page
g g Beach

.bld files

Tools for componentizing
models?

Phase 1. Preparation

Prior to the course, Instructor] requests that all enrolled students join CSDMS and also obtain an account on
beach. Obtaining access to beach through the University of Colorado will take 5-7 business days.
How: Students fill out forms on CSDMS wiki

Instructor2 creates a wiki page for the course and makes both Instructors administrators. Instructor2 posts
basic course information, contact information for Instructors, a link to the course syllabus, and general
references.

How: Instructors create a CSDM.S wiki page with links to other documents. Syllabus should provide links to all associated wiki
help pages, CSDMS Handbook sections, and tutorials for each section of the course.

Instructorl posts links on the course page to relevant model questionnaires, CSDMS help pages, and other
wiki pages for the course.
How: Model questionnaires must be available on the CSDMS wiki for each model that the course uses.

Instructor2 creates a discussion page on the CSDMS wiki, and posts an initial question for all participants:
“Describe your previous modeling experiences and interests.”

How: Create a discussion page on CSDMS wiki to save interactions and matke them visible to others within the course; non-
email discussion capability.

This capability is currently available as a “T'alk” page—we just need to enforce the editing conventions.

(bttp:/ | www.mediawiki.org/ wiki/ Help:Talk_pages)

Does this page or ones that link_from it need to be password-protected to allow conversations to be just seen by those inside the
conrse? To what extent should the conrse results and progress be viewed by other CSDM.S members and/ or the general public?
Need to be able to link to other documents and pdfs within the discussion.

Phase 2. Students Join the Course

28

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Students join CSDMS (obtaining wiki access) and sign up for a beach account (obtaining CMT and beach
access). While joining CSDMS the students can provide contact information, a link to their personal website,
and other profile information.

How: Students fill out forms on CSDMS wiki

Instructorl ensures that students have read permission to the course page, and read and write permission to
the discussion page. This allows them to contribute posts to the discussion page while preserving the content
of the main course page.

How: Instructors must be able to change permissions for students.

Students post responses to the instructor’s question on the discussion page.
How: Students must be able to properly edit the discussion page.

Phase 3. Introduction to CSDMS and its High Performance Computing System.

Students launch CMT directly from the CSDMS web and login using their beach account. Students review
html help files contained within CMT to become familiar with the CMT environment.
How: Students must have Java and 1PN access.

Phase 4. Lectures on theory and applications of several models.

To supportt the lectures, Instructorl provides links on the course page to model documentation and .bld-
specific tutorials for several models currently available in CMT.
How: Instructors must be able to link from the course page to html help within CMT.

Instructor2 uploads pdfs of scanned journal articles or textbook chapters to a specific directory on beach (this
is to limit copyright restrictions and avoid photocopying?)
How: Instructors and students must have access to a conrse directory on beach.

Phase 5. Lab exercises to explore 1) a coupled hydrological-glaciological model, i.e. TOPOFLOW
and GC2D, 2) a coupled river-delta model, i.e. HydroTrend and CEM, 3) a stratigraphic model,
SedFlux, and 4) a landscape evolution model, Erode.

Students load pre-determined configuration files (.bld) and practice doing model runs. Students click on the
visualization tab and are able to create several plots of the data using an interactive GUIL. They can compare
these figures with example figures in the corresponding tutorials for each .bld file.

How: Students must have access to 17isIt.

Students modify settings from the initial .bld file (such as swapping out components, or changing parameters
within a component) and save a new configuration file for their particular model run. After running the new
model, students save the .bld file and output files to a shared directory so other students may learn from these
runs without having to recreate them. Students post the file path from their model runs, and associated
model run metadata on the discussion page.

How: Students must be able to save output files into different directories.

Students create figures or movies from their model output files and upload these along with captions to
potentially several places where the images can be viewed by other students, and/or reviewed and graded by
the instructors.

-a personal page on the wiki

-the discussion page on the wiki

-a specific directory on beach

How: Students must have access to these components of the wiki, or be able to generate new biml help pages.

29

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Students use scripts to create new html files with their model figures and model run metadata (based on the
model run configuration settings found in the associated .bld files). These pages can then be incorporated
into CMT’s set of help pages as metadata helpful for future CMT use.

How: Students must be able to generate new html! help pages.

Students use the visualization tool to compare or overlay output files from their peers’ model runs (using
saved output files from one or more other students). They save several plots to the above listed places for
discussion and grading purposes.

How: Students must have access to other students’ model output. The discussion page should have a table or some way of logging
when djfferent model iterations are completed, so the class can keep track of this.

Students use components within CMT to ingest hydrologic or other data from a web server. They then use
these data as input data for model runs.
How: Web-based data server access must be incorporated into CMT functionality, along with corresponding belp documentation.

Phase 6. Design and run simulations for an independently designed research question within one of
these modeling domains.

Working within the four domains above (e.g., using existing CMT components), students either build model
configuration files from scratch or modify pre-existing .bld files to explore different research questions.
Students will likely need to generate new input files. Students generate figures and movies as above and post
to several places.

How: Students must be able to create and import input files for their model runs; documentation and tools must be present.

Instructorl fields complaints that students are having difficulty with their model runs, or notices that the
results students ate posting have errors. They ate able to examine how the model was run, make changes to
the configuration, and rerun the simulation.

How: Instructors must be able to access .bld files and log files from student model runs, and then modify them.

Phase 7. Course Wrap-Up

In addition to university-led Faculty Course Questionnaires, Instructors administer an optional, anonymous
sutvey to students regarding their experience in the course (e.g., joys/frustrations while using CMT, goals or
barriers to future involvement with CSDMS, suggestions for improvements to future courses).

How: Anonymous survey form on the wiki?

Instructorl archives student results either in a cleaned-up discussion page, or as new individual html help files

that can be used by future users of CMT.
How: Instructors should be able to copy selected student .bld files over to the main example directories for CMT.

30

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Appendix 3: Recommended Protocols for Model Software Developers
James P.M. Syvitski, Community Surface Dynamics Modeling System (CSDMS) Integration Facility,
Eric Grunsky, Natural Resources Canada, Geological Survey of Canada, 601 Booth St., Ottawa, K1A OES,
Canada and Editor-in Chief of Computers & Geosciences.
Abstract

Developers of research grade Geoscience models should ensure that their software contributions follow these
protocols: 1) Hold an open-source ‘GPL v2’ or a ‘GPL v2 compatible’ license; 2) Be widely available to the
community of scientists through an international model or code repository (e.g. CSDMS or C&G); 3)
Undergo a level of peer review; 4) Be written in an open-source language, or have a pathway for use in an
open-source environment; 5) Where appropriate, be written or refactored to allow for componentization by
having an interface, with exchange items documented; 6) Be accompanied with a formal metadata file, along
with test files; 7) Be clean and well-documented. Software may be vetted at three levels: 1) the model behaves
as advertised; 2) the code meets pre-approved specifications or follows community protocols; and 3) the
model provides for an acceptable depiction of nature. Freely available and open-source code allows for
complete information transfer and replication of results — the foundation of modern science. Open source
allows for the original developer to be recognized, protected, and their software to have the greatest impact
on science.

Introduction

At the 2009 International Association of Mathematical Geosciences (IAMG) annual meeting at Stanford
University, representatives of Community Surface Dynamics Modeling System (CSDMS) and IAMG met to
review protocols adopted by CSDMS as a possible guide for code submission to IAMG’s journal Computers
& Geosciences (C&G). Here we review this discussion and argue for protocol adoption beyond CSDMS and
C&G, and for the wider Geoscience community. The paper details concepts related to code sharing in general
using community modeling concepts as a guide.

About the Community Surface Dynamics Modeling System

CSDMS is an integrated community of experts who promote the quantitative modeling of earth-surface
processes. CSDMS develops, supports, and disseminates integrated software modules that involve the Earth
surface — the dynamic interface between lithosphere, atmosphere, cryosphere, and hydrosphere. CSDMS
coordinates a growing community of more than 78 U.S. Academic Institutions, 17 US Federal labs and
agencies, 67 non-U.S. institutes from 20 countries, and companies within an industrial consortium. CSDMS
serves this diverse community by promoting the sharing and re-use of high-quality, open-source modeling
software. The CSDMS Model Repository in January 2010 comprised a searchable inventory of more than 170
models with more than 3 million lines of code. CSDMS also offers the Geoscience community a Model-
coupling Framework, a Data Repository related to the CSDMS mission, and a CSDMS Education portal.

About the journal Computers & Geosciences

C&G features research articles and application articles that describe new computation methods for the
geosciences: e.g. computational infrastructure, informatics, collection, representation, management, analysis,
visualization, as well as for software development and scientific and social use of Geoscience information and
review articles and short notes are also accepted to support this general mission.

The aims of CSDMS and C&G overlap a great deal, and while both have complementary missions, they serve
the community in different ways, the latter concentrating on peer-reviewed journal papers that may or may
not be accompanied by open-source software. Code submitted to C&G is presently archived and made
available to the community through an IAMG portal. In the past, code submissions were not always
reviewed as part of the normal review of the submitted paper. In that sense code submitted to the C&G
repository (http://www.iamg.org/CGEditor/index.htm) is simply parked at their portal ready for
downloading. Although program code is typically tested by reviewers, no rigorous procedures are in place
with specific criteria for formal testing. Questions related to downloaded code remain a private affair between
a reader and the author(s).

31

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

CSDMS protocols for model contribution

Protocols are the procedures or the system of rules governing contributed community software, and provide
both technical and social recommendations to model developers. Software contributions to the CSDMS
Model Repository should:

1) Hold an open-source license.

2) Be widely available to the community of scientists.

3) Receive a level of vetting, for example the software should be determined to do what it says it does.
4) Be written in an open-source language, or have a pathway for use in an open-source environment.

5) Be wrtitten or refactored to allow for componentization by having an interface, with specific I/O
exchange items documented.

6) Be accompanied with a formally defined metadata file, along with test files.

7) Be clean and documented using keywords within comment blocks to provide basic metadata for the
model and its variables.

These protocols provide extensibility to software and allow for state-of-the-art tools to convert stand-alone
models into flexible, "plug-and-play" components that can be assembled into larger applications (Syvitski et
al,, in press). The protocols also allow a migration pathway towards high-performance computing (HPC). We
describe each protocol below.

Open-Source Software license

The usage and redistribution of software is defined by its software license. Software licenses come in a range
of variety including proprietary, free and/or open source. Code may be distributed as an executable ot as
source code. Proprietary licenses control the usage or redistribution, and the copyright remains with the
publisher. Proprietary software often involves commerce, made available in closed-source binary format, with
legally binding use- or view-restrictions.

A free, open source license in contrast allows the software code to be: 1) inspected, 2) modified, and 3)
redistributed. The GNU General Public License (GPL) also allows the original or modified version of the
software to be commercially sold, even if the code remains freely available. Open source licensing requires
that the source code be available. The GPL v2 license is widely used by free open source software developers
and because the license:

* Provides a better quid-pro-quo for developers

¢ Establishes collaboration between people

¢ Protects the developers work

* Encourages increasing the amount of free software.

Using the GNU GPL license requires that all the released improved versions be free software. This means
you can avoid the risk of having to compete with a proprietary modified version of your own work. A
developers’ project is likely to be more successful if it accommodates fellow developers who also use the GPL
license. CSDMS urges program developers to choose ‘GPL v2’ or a ‘GPL v2 compatible’ license to make it
possible to couple the model with other models such that other people can use them. Below we list approved
licenses by the Free Software Foundation (FSF) that are GPL v2 compatible:

. Artistic License 2.0

* Berkeley Database License

. modified BSD license

o Boost Software License

* Cryptix General License

. Eiffel Forum License version2

32

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

. GNU Lesser General Public License

o Intel Open Source License

. ISC license

. MIT license

* Python Software Foundation License 2.0.1, 2.1.1 and newer
N W3C Software Notice and License

. zlib/libpng license

. Zope Public License version 2.0

To maximize software use by fellow scientists and to make it free software, the following lines of notice must
be incorporated into the program, attached to the start of each source file to most effectively convey the
exclusion of warranty. Each file should have the "copyright" line and a pointer to where the full notice is
found:

<one line to give the program's name and a brief idea of what it does.>

Copyright (C) <year> <name of author>

Developer can be contacted by <email> and <paper mail>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the

License, or (at your option) any later version.

5. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

6. A copy of the GNU General Public License is available through the Free Software Foundation, Inc.,

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

b=

Further details of how to license software, and to use employer signatures, can be found at
http://csdms.colorado.edu/wiki/License. CSDMS Integration software is licensed under the BSD or MIT-
X11 license. This implies that permission is granted, free of charge, to any person obtaining a copy of
CSDMS integration software and associated documentation files, without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
software, and to permit persons to whom the software is furnished, subject to the following conditions:

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Many scientists are strong believers that science is advanced through mutual cooperation. Community
modeling involves the collective efforts of individuals that code, debug, test, document, run, and apply
models and modeling frameworks. Community modeling relies on open-source code to address the practical
need of contributing developers to examine and modify the code. Open-source code provides complete
information transfer. This #ransparency is important because code is the ultimate statement of the scientific
hypotheses embodied in a numerical model, and their implementation. In the world of software, details are
important. A scientific article describing code, as is often the case with Computers & Geosciences articles, may
provide the theoretical equations, but the solution to these equations can take numerous forms, and each
solution has its pyramid of assumptions and limitations. Therefore open-source code allows for full peer review
and replication of results — the foundation of modern science.

If a geologist was to map outcrops in a certain part of our landscape, and subsequently write a science article
about their findings, another geologist sooner or later could go to the same landscape and determine whether
the original data and interpretations were legitimate and appropriate. Peer review is as important in the
science of software engineering as it is in the observational sciences.

33

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Open source code allows for reuse, often in new and clever ways. This certainly reduces redundancy. In the
U.S., Congressional law dictates that software developed with public funds must become publicly available,
with national security exceptions. Open-source code is an effective way to meet this requirement. CSDMS
promotes the development of free open source code since it operates largely with public funds in the public
domain. Yet even industry supports the CSDMS open-source efforts.

Open source does not mean that the original developer is not recognized. Developers are recognized with the
metadata associated with each model, with GPL2 software license protection, through community exposure,
vetting and recognition, and through accelerated citations within peer-reviewed publications.

Software Availability

In the wortld of science, software code is often considered “research grade”. That means that it is often
relatively untested, may contain bugs, and might not be at the standards required for true “commercial grade”
or “operational grade” code. Coding glitches in research grade code are often unknown by the original
author. With wider community use, such problems are discovered and either rectified by the original author
or the bug discoverer. Commercial grade code is widely available, limited to the details related to the financial
transaction and other proprietary redistribution and use restrictions. Operational grade code describes code
used by governments for monitoring or enforcing, and may or may not be widely available to the public. The
Weather and Research Forecasting (WRF) model is widely adopted by weather services worldwide to make
operational predictions. WRF code is open source. Other operational models, such as NOAA’s
WAVEWATCH III®, an ocean wave model used for hindcasting, nowcasting and forecasting, is subject to
U.S. export restrictions. The code is open source and widely available, but a short list of countries are not
allowed access.

Research grade code should be widely available to the community of scientists. The best way to have the
code available is through an appropriate international repository. Geoscience models can be submitted to the
CSDMS Model Repository. Code associated with articles in Computers & Geosciences can be submitted to
its C&G Code Repository. Since the code is open source, it can appear in more than one Repository. Too
often code is issued with an open source license (or no license at all) but access to the code is restricted to
access through the author. Unfortunately this allows the author to decide who they will give the code to.
This runs contrary to the transparency needed in science, and we discourage this level of availability.

Some models such as ROMS, the Regional Ocean Modeling System, support a very large community (1000s)
who use and develop the model. New users must register through the ROMS portal. We view this level of
access as acceptable as the ROMS developers need to demonstrate a large user group, to those who fund
their program activity. ROMS is open source and free without restrictions to all legitimate scientists.

Vetting Software

This is perhaps the most difficult subject of all of the CSDMS protocols. Vetting is the review and approval
process of, in our case, Geosciences software. Vetting comes in many forms, from informal to formal, and
from objective to subjective. Software vetting has three components: 1) verification that the model behaves
as advertised; 2) confirmation that the code meets pre-approved specifications, for example is accompanied
with metadata documentation or meets community protocols; and 3) demonstration that the model provides
an accurate depiction of nature. Vetting in the context of C&G would mean that the software was subjected
to some level of independent peer-review although there are no formal rules in place for reviewers.

In the world of community modeling, it is not unusual for software to be reviewed by a working group of
specialists. Reviewers would be given a set of guidelines and standard questions, and would be asked to the
test the model and respond to the queries. The review officer behaves like a journal editor in the sense that
identified problems might require fixes before being given the stamp of approval of the community. For a
journal such as C&G, the process might involve a reviewer to provide a similar analysis. The reviewer could
be independent of the paper review, or might agree to do both activities on behalf of the community and
journal, even though this extends beyond the current review mandate of the journal.

34

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

Answering whether a model offers an accurate depiction of nature is complex — science is provisional, and a
yes/no answer is often not possible. This is true with all scientific manusctipts to some degree, code being
no different. After determining that the model does what it says it does, the reviewer might reflect on the
level of testing that lies behind the model. For example and when appropriate, has the model been run against
known benchmark experiments, and compared with field or laboratory observational data? Are the claims
associated with the model within acceptable uncertainties related to the time and space resolutions of the
model (or other appropriate resolutions)?

More subjective are questions of performance that often relate to how the conservation equations are solved.
Performance often translates as the usefulness to an end user. In the field of fluid dynamics, performance
varies with each level of complexity: advection-diffusion, shallow water wave equation, Reynolds-averaged
Navier Stokes, large-eddy simulation, direct numerical simulation, hydrostatic, non-hydrostatic, Boussinesq,
non-Boussinesq. Ultimately transparency trumps subjectivity.

Open-Source Programming Language

Computer software is written in a programming language that is able to access a target compiler to allow
precise translation between source code and object code — an ‘executable’ able to run on a particular
computer platform. In general all source code is written in a higher-level computer language and the
executable is written in machine code. Programming languages are static only in narrow release formats.
There are many versions of Fortran, for example, with new versions having greatly enhanced abilities to work
with modern platforms and compilers and their libraries for enhanced functionality.

In the open source community, developers develop their models using an open-source language (e.g. C, C++,
any Fortran, Java, Python), or a language that has a pathway for use in an open-source environment. A
developer should test whether their code can compile using an open source compiler (e.g. GNU Fortran
compiler). This will ensure the greatest chance of portability of the code from one computational platform to
another, minimizing problems.

The CSDMS community requires its code to be written in an open-source language so that the various
models can communicate with each other using ‘Babel’. Babel is an open-source, language interoperability
tool (and compiler) that automatically generates the "glue code" that allows components written in different
computer languages to communicate (Dahlgren et al. 2007). Babel currently supports C, C++, Fortran 77, 90,
95 & 2003, Java and Python. Almost all of the Geosciences models held in the CSDMS Model Repository are
written in one of these languages. Babel enables the passing of variables with data types that may not
normally be supported by the target language (e.g. objects, complex numbers). To create the glue code needed
components written in different programming languages to pass information between them, Babel only needs
to know about the interfaces of the components. It does not need any implementation details. Babel can
ingest a description of an interface in one of two "language neutral" forms, XML (eXtensible Markup
Language), or SIDL (Scientific Interface Definition Language). SIDL provides a description of a scientific
software component interface, including the names and data types of all arguments and the return values for
each member function.

Software written in other high-level languages might have a translation pathway to one of the BABEL-
supported open-source programming languages. For example, CSDMS offers the community an enhanced
version of 12py’ designed to convert IDL source code to the open-source Python language.

Refactoring a Model into a Component

Most models are written to be stand-alone models. In other words, the software is designed to define and
initialize its variables and arrays, read in any needed input data, run the program to get realizations according
to its discretized algorithms, write out its output, and end the run. In the field of environmental science, a
model would cover a given domain, for example lake dynamics. After some time, the model may be further
developed to cover other environmental domains, so for example a lake model might gain a river basin
model. Large codes often involve more than one environmental process or domain, for example wind-driven
currents plus wave dynamics in oceanography, or channelized flow overland flow and groundwater flow in

35

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

hydrology. Codes that involve multiple domains often involve a diversity of experts needed for their
development, and thus the birth of community modeling. Inevitably when the codes reached a certain level of
complexity, the codes became modeling frameworks. Too large for individuals to understand all the details,
developers would pass on their process modules to be implemented by a master(s) of the code.

Modern software engineering has developed new standards for data exchange, model interfaces, and ways to
employ varied computational platforms (laptops, servers, high performance computing clusters, distributed or
cloud computing). In the world of community Geosciences modeling, there has been strong movement
towards developing models as components within architectures and frameworks, each offering interfaces,
exchange items (Syvitski et al, in press). Below we introduce these terms and show how the CSDMS
community has adopted these concepts. While these concepts may not be appropriate for all contributions to
the journal Computers and Geosciences, they are highly appropriate for developers wishing to enter the
wortld of community modeling.

Frameworks increase a developet’s productivity, and a uset’s functionality. Environmental modeling
frameworks support the coupling of models into functional units (e.g. components, classes, or modules),
component interaction and communication, time stepping, regriding of arrays, scaling of spatial data,
multiprocessor support, and cross language interoperability. A framework may also provide a uniform
method of trapping or handling exceptions (i.e. errors).

An Architecture is the set of standards that allow components to be combined and integrated for enhanced
functionality, for instance on high-performance computing systems. The standards are necessary for the
interoperation of components developed in the context of different frameworks. Software components that
adhere to these standards can be ported with relative ease to another compliant framework.

Components are functional units that once implemented in a particular framework are reusable in other
models within the same framework, with little migration effort. One advantage of using a modeling
framework is that pre-existing components can be reused to facilitate model development. Component-based
modeling brings about the advantages of “plug and play” technology. Component programming builds upon
the fundamental concepts of object-oriented programming, with the main difference being the presence of a
framework. Components are generally implemented as classes in an object-oriented language, and are
essentially "black boxes" that encapsulate some useful bit of functionality. A framework provides the
environment wherein components can be linked together to form applications. A component differs from an
ordinary subroutine, module or class, because they can communicate with other components written in a
different programming language.

Components typically provide one or more interfaces by which a caller can access their functionality. In the
context of plug-and-play components, the word interface refers to a named set of member functions
(methods), defined with regard to argument types and return types but without any actual implementation.
An interface is a user-defined type, similar to an abstract class, with member function "templates" but no data
members. A component contains an actual implementation for each member function (and possibly member
functions beyond the ones that comprise a particular interface). Therefore it is possible and often useful for a
single component to expose multiple, different interfaces, allowing a component to be used in a greater
variety of settings.

Most surface dynamics models advance values forward in time on a grid or mesh and have a similar internal
structure. This structure consists of lines of code before the beginning of a time loop (the initialize step), lines
of code inside the time loop (the run step) and finish with additional lines after the end of the time loop (the
finalize step). Virtually all component-based modeling efforts (e.g. ESMF, OpenMI, OMS, CSDMS)
recognize the utility of moving these lines of code into three separate functions, with names such as Initialize,
Run and Finalize, or IRF for short (Syvitski et al., in press). These three IRF functions constitute a simple
model-component interface that provides a calling program with fine-grained access to a model's capabilities
and the ability to control its overall time stepping so that it can be used in a larger application. The calling
program "steers" a set of components and so is referred to as a driver.

36

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

A meaningful linkage of components often requites both data exchange and IRF functions. A model's
interface must also describe functions that access data that it wishes to provide (getter functions) and
methods that allow other components to change its data (setter functions). With getter and setter interface
functions, connected components can query generated data as well as alter data from the other model.
Component connections are made through ‘provides ports’ and ‘uses ports’ within a Common Component
Architecture framework (Armstrong et al. 1999). The first provides an interface to the component’s own
functionality (and data). The second specifies a set of capabilities (or data) that the component requires from
another component to complete its task. A provides-port that exposes an IRF interface, allows another
component to gain access to its initialize, run, and finalize steps. The uses-port presents functionality that it
lacks itself and therefore requires from another component. The component is not able to function until it is
connected to a component that has the required functionality. This allows a model developer to create a new
model that uses the functionality of another component without having to know the details of that
component or to even have that component exist at all.

This style of plug-and-play component programming benefits both model programmers and users. Within a
framework model developers atre able to create models within their areas own of expertise and rely on experts
outside their field to fill in the gaps. Models that provide the same functionality can easily be compared to one
another simply by unplugging one model and plugging in another, similar model. In this way users can easily
conduct model comparisons and more simply build larger models from a series of components to solve new
problems.

For example standalone models are made into component models by dividing them into tasks that other
component models could use (Fig. 1).

Initialize

“ Another Component

Run

Initial Standalone

Model ‘ Finalize

Get Value

“ Another Component

Sed Value

Figure 1. Refactoring a stand-alone model for linkage to other model components.

Once a contributed model has been refactored into a component model, it becomes available to be linked to
other appropriate models within the CSDMS component library to provide value added products beyond the
intention or domain of the original model (Fig. 2). The language neutral compiler BABEL allows for models
to communicate across various languages (Fig. 2). Access to CCA/CSDMS, OpenMI and ESMF Services,
such as grid remapping tools, is then made available. Databases and files can also be componentized and
coupled within the CSDMS framework.

37

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

f77
CSDMS Companent Library
CCA/CSDMS Services Co, I 190
OpenMI Services ('BQBEL
ESMF Services Cast™ I <= Python
Java

CCA/CSDMS Framework

CSDMS
Driver

Provide Use
Port Port

Figure 2. The CSDMS model coupling domain.

Metadata Description File

Information that describes contributed software is a necessary requirement for any code submission to either
CSDMS or C&G. Appropriate metadata should cover contact information on the code developer(s), and
information on the model: model domain, spatial dimensions (e.g. 2Dxz), and spatial extent (e.g. regional
scale). The model description, if it is not already described in a paper, should include processes represented,
key equations and key parameters, length scale and resolution constraints, time scale and resolution
constraints, and numerical limitations and issues. Technical description should include: supported platforms,
programming language, code optimization (e.g. parallel computing), development period, code availability and
repository, software license, framework or interface compliance, memory requirements, and typical run times.
Metadata should also include a description of the input and output files, including their format and whether
pre- or post-processing is needed, and type of visualization software that is required. Unless described in an
accompanying papet, the level of testing should be described. Input files to run the model and output files to
verify the initial model run should also be included with the metadata.

Clean and Documented Code

Submissions to a model or code Repository should be refactored for maintenance and extensibility (Fowler,
1999; Kerievsky, 2004). Extraneous source lines that have been commented out should be removed. Code
should be well documented both for future developer readability and to eliminate future mistakes. Where
possible source code should be annotated using keywords within comment blocks to provide basic metadata
for the model and its variables. Units should be well defined.

Summary

While the CSDMS protocols are mission oriented, they also offer good practice for code submission to the
Computers & Geosciences Repository, and for code development in general. CSDMS protocols have been
widely vetted within its extensive community (Hutton et al., 2010), and among other affiliated modeling

38

COMMUNITY SURFAGCE DYNAMICS MODELING SYSTEM Semi-Annual Report 2010

communities (Voinov et al., 2010). The protocols provide developers with recognition and protection,
increased longevity and usability of the source code, and greater penetration into the community of a model
development or its accomplishments. The protocols reflect the increased level of accountability required by
funders. They eliminate duplication and further the advance and enhance science. We recommended these
protocols for code submission to Computers and Geosciences

Acknowledgments

The discussion on vetting includes comments from Professor P Wiberg (U Virginia), Professor B Murray
(Duke U), Professor G Tucker (U Colorado Boulder), and Professor R Slingerland (Penn State U). The
discussion on components and frameworks includes comments from Dr. O David (Colorado State U), Dr. S
Peckham (CSDMS Boulder), and Dr. C. Delucca (CIRES/NOAA Boulder). The discussion on licenses and
refactoring includes comments from Dr. A Kettner and Dr. E Hutton (CSDMS Boulder).

References

Armstrong, R., D. Gannon, A. Geist, et al. 1999. Toward a common component architecture for high-
performance scientific computing. In Proceedings of the 8% Intl. Symposium on High Performance Distributed
Computing, pp. 115-124.

Collins, N., G. Theurich, C. DeLuca, et al. 2005. Design and implementation of components in the Earth
System Modeling Framework. Int/. |. High Performance Computing Applications 19: 341-350.

Dahlgren, T., T. Epperly, G. Kumfert and . Leek 2007. Babe/ User’s Guide. 2007 edition. Center for Applied
Scientific Computing, U.S. Dept. of Energy and University of California Lawrence Livermore National
Laboratory, 269 pp.

Fowler, M. 1999. Refactoring: Improving the design of existing code. Addison Wesley Professional, Reading MA, 439
pp-

Gregersen, J.B., Gijsbers, PJ.A., and Westen, S.J.P. 2007. OpenMI: Open Modeling Interface. J.
Hydroinformaties 9: 175-191.

Hutton, E.W.H.,].P.M. Syvitski & S.D. Peckham, 2010. Producing CSDMS-compliant Morphodynamic Code
to Share with the RCEM Community. In River, Coastal and Estuarine Morphodynamics RCEM 2009, eds. C.
Vionnet et al. Taylor & Francis Group, London, ISBN 978-0-415-55426-CRC Press, p. 959-962.

Kerievsky, J. 2004. Refactoring to Patterns. Addison Wesley Professional, Reading MA, 367 pp.

Syvitski, J.P.M., Peckham, S.P., David, O., Goodall, J.L., Delucca, C., Theurich, G. in press.
Cyberinfrastructure and Community Environmental Modeling. In: Handbook in Environmental Fluid
Dynamics, Editor: H.].S. Fernando, Taylor and Francis Publ.

Voinov, C. DeLuca, R. Hood, S. Peckham, C. Sherwood, J.P.M. Syvitski, 2010, A community approach to
Earth systems modeling. EOS Transactions of the AGU, 91(13): 117-124.

39

