CSDMS 2017 annual meeting Michael Young

From CSDMS
Presentation provided during CSDMS annual meeting 2017

Improving soil models by connecting scientific disciplines
Michael Young
UT, Bureau of Economic Geology
Michael H. Young1, Kris van Looy2, Harry Vereecken2, Martine van der Ploeg3
1 Bureau of Economic Geology, Jackson School of Geosciences, University of Texas at Austin
2 Agrosphere Inst., IBG-3, Inst. of Bio-geosciences, Forschungszentrum Jülich GmbH
3 Department of Soil Physics and Land Management, Wageningen University & Research

Soil science has developed as a critical discipline of the biosphere and continues to develop every day; yet state-of-the-art modeling is unable to adequately synthesize many processes in applied earth system models. If we agree that soil is a critical life-supporting compartment that supports ecosystem functions (e.g., habitat for biodiversity) and ecosystem services (e.g., water filtration, nutrient management), and that produces food, feed, fiber and energy for our societies, then our inability to integrate soil processes into the broader array of earth system models is an issue that needs solving. Integration is an achievable goal. Other research communities have collaborated intensively over the past decades—specifically the climate modeling community—but even many of their approaches overlook (or over-average) the detailed and advanced shared knowledge of the soil compartment. This represents a gap in how scientific knowledge is implemented. Over the recent decades, a new generation of soil models has been developed, based on a whole systems approach comprising all physical, mechanical, chemical, and biological processes. The processes are needed to fill these critical knowledge gaps and contribute to the preservation of ecosystem function, improve our understanding of climate-change feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. The International Soil Modeling Consortium (ISMC) was formed in 2016 as a new community effort of soil modelers to improve how soil processes are communicated to other scientific communities, from earth dynamics to biogeosciences to global climate modelers. ISMC was formed around three themes: linking data and observations to models; creating the means for soil model intercomparison studies; and connecting our soil-related knowledge between science communities. Within less than 12 months of inception, ISMC has warehoused nearly 40 soil-related models, initiated data sets and platforms for modeling studies, and facilitated collaborations with several international groups, including CSDMS. In this discussion, we will describe the motivation and genesis of ISMC, present current status of our research, and seek to create new research partnerships.


Recorded video of presentation (YouTube):


PDF of presentation:
pdf *

* Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know and we will respond as soon as possible.