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Dakota Sensitivity Analysis and Uncertainty 
Quantification, with Examples 

 Dakota overview 
 How Dakota enhances computational models / simulations 

 Dakota project and software 

 Basics of getting started 

 Sensitivity Analysis Methods with Examples 
 Parameter studies 

 Global sensitivity analysis 

 Uncertainty Quantification Methods with Examples 
 Basic and advanced UQ methods in Dakota 

 Model Calibration Methods with Examples 
 Least squares 

 Bayesian 

 



Credible Prediction in  
Scientific Discovery and Engineering Design 

Predictions 

 Predictive computational models, enabled by 
theory and experiment, can help: 

 Predict, analyze scenarios, including in 
untestable regimes 

 Assess risk and suitability 

 Design through virtual prototyping 

 Generate or test theories  

 Guide physical experiments 

 Answer what-if? when experiments infeasible… 

 
For simulation to credibly inform scientific, engineering, and policy decisions 
we must: 

 Ask critical questions of theory, experiments, simulation 

 Use software quality and model management best practices 

 Manage uncertainties and use tools for UQ, calibration, optimization 

 

 



Dakota Supports Simulation Credibility 

Provides greater perspective for scientists, engineers, and decision makers— 

 Enhances understanding of risk by quantifying margins and uncertainties 

 Improves products through simulation-based design 

 Assesses simulation credibility through verification and validation 

 Enables computer-based experiments analogous to physical experiments 

 Manages and analyzes ensembles of simulations:  

Automate typical “parameter variation” 
studies with various advanced methods and 
a generic interface to your simulation. 



Advanced Exploration of Simulations 

Dakota enriches simulations to address analyst/designer questions: 

 Which are crucial factors/parameters, how do they affect key metrics? (sensitivity) 

 How safe, reliable, robust, or variable is my system? (UQ) 

 What is the best performing design or control? (optimization) 

 What models and parameters best match experimental data? (calibration) 

Xyce, Spice 

Circuit 

Model 

resistances, via 

diameters 

voltage drop,  

peak current 

Abaqus, 

Sierra, CM/ 

CFD Model 

material props, 

boundary, initial 

conditions  

temperature, stress, 

flow rate 

All based on iterative analysis of a computational model for phenomenon of interest 

 Commercial or In-house, loose-coupled/black-box or embedded/tightly integrated… 

 



Dakota History and Resources 

 Genesis: 1994—Originally only an optimization tool 

 Modern software quality and development practices—continuous integration, 
nightly cross-platform testing 

 Released every May 15 and Nov 15 

 Established support process for SNL, Tri-Lab, and beyond 
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 Extensive website: documentation, 
training materials, downloads 

 Open source LGPL license facilitates  
external collaboration 

 Over 12,000 Downloads 

 

Algorithm R&D, driven by 
user needs, deployed in 

production software 

http://dakota.sandia.gov 
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Broad Science and Engineering Needs Drive 
Dakota Development 

Many simulation areas: mechanics, structures, shock, fluids, electrical, 
radiation, bio, chemistry, climate, infrastructure, etc, for applications in varied 
disciplines— 

 Alternative energy:  

 Wind turbine and farm uncertainty 

 Hydropower optimization 

 Nuclear energy and safety 

 NASA launch safety 

 Nuclear reactor analysis 

 Climate:  

 Ice sheet model calibration 

 UQ for community climate models 

 DoD  applications 

 Shock physics 

 Aeroheating 



Optimization and Calibration 

 Goal-oriented: find best performing design, scenario, 
or model agreement 

 Identify system designs with maximal performance 

 Determine operational settings to achieve goals 

 Minimize cost over system designs/operational 
settings 

 Identify best/worst case scenarios 

 Calibration: determine parameter values that 
maximize agreement between simulation and 
experiment 

fuel tanks 

 Lockheed Martin CFD code to 
model F-35 performance 

 Find fuel tank shape with 
constraints to minimize drag, 
yaw while remaining 
sufficiently safe and strong 

Calibrate parameters to match 
experimental stress observations 



 Which are the most influential parameters? 

 Understand code output variations as input factors vary to 
identify most important variables and their interactions 

 Identify key model characteristics/trends, robustness  

 Focus resources for data gathering, model/code 
development, characterizing uncertainties 

 Screening:  reduce variables further UQ or 
optimization analysis 

 Construct surrogate models from sim data 

 Dakota SA formalizes and generalizes one-off parameter 
variation / sensitivity studies you’re likely already doing 

 Provides richer global sensitivity analysis methods 

Sensitivity Analysis 

node max node avg

METAL1 0.96 0.82

METAL2 0.11 0.04

METAL3 0.10 0.05

METAL4 0.80 0.81

METAL5 0.86 0.91

VIA1 0.71 0.66

VIA2 0.80 0.76

VIA3 0.57 0.60

VIA4 0.91 0.94

CONTACT 0.21 0.13

polyc 0.04 0.05

Vdd Metrics

correlation coefficients 

Dakota + Xyce SA for 
CMOS7 ViArray 
performance during 
photocurrent event 



 Assess effect of input parameter uncertainty on model 
outputs 

 Determine mean or median performance of a system 

 Assess variability in model response 

 Find probability of reaching failure/success criteria 
(reliability) 

 Assess range/intervals of possible outcomes 

 UQ simulation ensembles also used for validation with 
experimental data 

Uncertainty Quantification 
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 Device subject to heating, e.g.,  
modeled with heat transfer code 

 Uncertainty in composition/ environment 
(thermal conductivity, density, boundary) 

 Make risk-informed decisions for strong 
link / weak link thermal race 
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Simulation management and Parallelism 

 Runs in most commonly-used computing 
environments 
 Desktop: Mac, Linux, Windows 

 HPC: Linux clusters, IBM Blue Gene/P and /Q, IBM AIX 

 Exploits available concurrency at multiple levels.  
E.g.  
 Multiprocessor simulations 

 Multiple simulations per response 

 Samples in a parameter study 

 Optimizations from multiple starting points 

 File management features, including 
 Work directories to partition analysis files 

 Template directories to share files common to all 
analyses 

 

 

 

 

 



Steps to Get Started with Dakota 

1. Define analysis goals; understand how Dakota helps, learn about 
and select from possible methods 

2. Access Dakota and understand help resources 

3. Automated workflow: create a workflow so Dakota can 
communicate with your simulation 

 Parameters to model, responses from model to Dakota 

 Typically requires programming (Python, Perl, Shell, Matlab,  
C, C++, Java, Fortran, …) 

 Workflow reusable; crosscuts Dakota analysis types 

4. Dakota input file: Using your favorite text editor, configure Dakota 
to exercise the workflow to meet your goals 

 Tailor variables, methods, responses to analysis goals 

 Syntax documented in Reference Manual 

5. Run Dakota: command-line; text input / output 
 



Dakota Text Input 

File 

Dakota Output: 

Text and Tabular Data 

Simulation  

(physics model) 
Code 

Input 

Code 

Output 

Dakota Parameters 

File 
variables 

Preprocessing 
User-supplied 

automatic post-

processing 

Analysis Driver 
interface 

QOIs in Dakota  

Results File 
responses 

Dakota Executable 
method 

Dakota Execution and Information Flow 



Cantilever Beam Application Example 

Constants 

L: length (inches) 

D0: max displacement 

Parameters (Variables) 

w: width (in.) 

t: thickness (in.) 

R: yield stress (lb./in2) 

E: Young’s modulus (lb./in2) 

X: horizontal load (lb.) 

Y: vertical load (lb.) 

QOIs (Responses) 

A: area  

Sc: stress constraint 

Dc: displacement constraint 
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Dakota Concurrent Interaction with the  
Cantilever Beam Analysis Code 

Analysis Code 
mod_cantilever 

Analysis Input 
Parameters2 

Analysis Output 
Responses2 

Analysis Input 
ParametersN 

Analysis Output 
ResponsesN 

Analysis Input 
Parameters1 

Analysis Output 
Responses1 

…
 

…
 



Sample Dakota Input File: 
Vector Parameter Study 

strategy 
  single_method 
  graphics, tabular_graphics_data 
 
method 
  vector_parameter_study 
  num_steps = 10 
  final_point  4.0 4.0 40000. 29.E+6 500. 1000. 
 
variables 
  continuous_design = 2 
    initial_point  1.0          1.0 
    descriptors    'beam_width' 'beam_thickness' 
  continuous_state = 4 
    initial_state  40000. 29.E+6 500. 1000. 
    descriptors    'R'    'E'    'X'  'Y' 
 
interface 
  direct 
  analysis_driver = 'mod_cantilever' 
 
responses 
  num_objective_functions = 3 
  descriptors = 'area' 'stress' 'displacement'              
  no_gradients 
  no_hessians 

Define Flow / 

Algorithm 

Define Problem / Mapping 



Getting Started and Getting Help 

 Supported platforms: Linux/Unix, Mac OS X,  
Windows  

 Dakota web page: http://dakota.sandia.gov 

 Extensive documentation (user, reference, developer)  

 Support mailing lists / archives 

 Software downloads: official releases and stable development version 
(freely available worldwide via GNU LGPL) 

 User’s Manual, Chapter 2: Tutorial with example input files 

 Support: 

 dakota-users@software.sandia.gov  
(Dakota team and user community) 
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Dakota Sensitivity Analysis (SA) 

 SA goals and examples 

 Global SA approaches and metrics available in Dakota 

 Select Dakota examples for parameter studies and global SA 



Why Perform Sensitivity Analysis? 

 What? Understand code output variations as input factors vary 

 Why? Identify most important variables and their interactions 

 Identify key model characteristics: smoothness, nonlinear trends, robustness 

 Provide a focus for resources 

 Data gathering and model development 

 Code development 

 Uncertainty characterization 

 Screening:  Identity the most important variables, down-select for further UQ 
or optimization analysis 

 Can have the side effect of identifying code and model issues 

 Data can be used to construct surrogate models 

 Dakota SA formalizes and generalizes one-off sensitivity studies you’re likely 
already doing 

 Provides richer global sensitivity analysis methods 



Sensitivity Analysis:  
Influence of Inputs on Outputs  

x1 

f(x1) 

x1 

f(x1) 

Assess variations in f(x1) due to (small or large) perturbations in x1. 

• Local sensitivities  

• Partial derivatives at a specific point in input space. 

• Given a specific x1, what is the slope at that point? 

• Can be estimated with finite differences 

• Global sensitivities 

• Found via sampling and regression. 

• What is the general trend of the function over all values of x1? 

• Typically consider inputs uniformly over their whole range 

local 

global 
local 

local 
local 

global global 

many already do 

basic SA;  

perturb from 

nominal, see effect 



Global Sensitivity Analysis Example: 
Earth Penetrator 
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Notional model for illustration purposes only  

(http://www.sandia.gov/ASC/library/fullsize/penetrator.html) 

threat: width, length 

φ 

target: soil depth,  

structure width (span) 

 Underground target with external threat: assess sensitivity in target response to target 
construction and threat characteristics 

 Response: angular rotation (φ) of target roof at mid-span 

 Analysis: CTH Eulerian shock physics code; JMP stats 

 Revealed most sensitive input parameters and nonlinear relationships 

12 parameters describing target & threat 

uncertainty, including… 



• Assess parameter influence  
on boiling rate, a key crud predictor 

• Dakota correlation coefficients: 
strong influence of  
core operating parameters  
(pressure more important than 
previously thought) 

• Dittus-Bolter correlation model may 
dominate model form sensitivities 
(also nonlinear effects of ExpPBM) 

• Scatter plots help visualize trend in 
input/output relationships 

 

 

sensitivity of mass evaporation rate (max) to operating parameters 
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Global SA Example:  
Nuclear Reactor Thermal-Hydraulics Model 



 

 What are some global sensitivity analysis questions you could ask for 
the cantilever beam? 

 What kinds of bounds or variable characterizations would you use? 

 What might you expect the results to be? 

 Beam computational model: 

weight (area = w*t) 

 

 

 

 

Cantilever Beam Sensitivity Analysis 
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Global Sensitivity Analysis in Dakota 

 Assess effect of input variables considered jointly over their 
whole range.  Dakota process: 
 Specify variables: lower and upper bounds 

 Specify method: e.g., uniform random sampling 

 Specify responses: compute response value at each sample point 

 Run Dakota and analyze input/output relationships 
 

 Sample designs (methods) available: 
 Parameter studies: list, centered, grid, vector, user 

 Random sampling: Monte Carlo, Latin hypercube, Quasi-MC, CVT 

 DOE/DACE: Full-factorial, orthogonal arrays, Box-Behnken, CCD 

 Morris one-at-a-time 

 Sobol indices via variance-based decomposition, polynomial chaos 

 

 Metrics: trends, correlations, main/interaction effects, Sobol 
indices, importance factors/local sensitivities 



Basic Dakota SA for Cantilever: 
Centered and Grid Parameter Studies 

 

 Start at nominal values, perturb up and down in each 
coordinate direction 

 Specify the parameter variations, which responses to study 

 

 

 

 Construct grid with a certain number of partitions in each 
dimension 

 What are benefits/drawbacks of these methods? 

 

Example: 

uniform grid 

over [-2.0, 2.0] 



Exercise: Multi-dimensional  
Parameter Study 

 Goal: understand how responses area, stress, and displacement vary with 
respect to the inputs w and t on a grid of points. 

 Exercise:  run the mod_cantilever computational model at a grid of points over 
[1.0, 4.0] using the multidim_parameter_study method 

 Try 9 points in one dimension, 6 in the other 

 See method and variable commands in Dakota reference manual 

 

 

Example: 

uniform grid 

over [-2.0, 2.0] 



Dakota Input File and Results: Cantilever  
Multi-dimensional Parameter Study 

# examples/cantilever/cantilever_grid.in 
strategy, 
single_method 
  graphics,tabular_graphics_data 
 
method, 
multidim_parameter_study 
  partitions = 9 6 
 
variables, 
active design 
continuous_design = 2 
  lower_bounds   1.0      1.0 
  upper_bounds   4.0      4.0 
  descriptors      ’w'     ’t' 
continuous_state = 4 
  lower_bounds  40000. 29.E+6 500. 1000. 
  upper_bounds  40000. 29.E+6 500. 1000. 
  descriptors      'R'   'E'   'X'   'Y' 
 
interface, 
direct 
  analysis_driver = 'mod_cantilever' 
 
responses, 
num_objective_functions = 3 
    response_descriptors = 'area' 'stress' 'displacement'              
no_gradients 
no_hessians 

Dakota tabular data plotted with Minitab 

What are benefits/drawbacks? 



Workhorse SA Method: Random Sampling 

 Generate space filling design (typically 
Monte Carlo or Latin hypercube with 
samples = 2x or 10x number of variables) 

 Run model at each point 

 Analyze input/output relationships with  

 Correlation coefficients 

 Simple correlation:  strength and direction of 
a linear relationship between variables 

 Partial correlation: like simple correlation but 
adjusts for the effects of the other variables 

 Rank correlations: simple and partial 
correlations performed on “rank” of data 

 Regression and resulting coefficients 

 Variance-based decomposition 

 Importance factors 

 

Two-dimensional projections 

of LHD for Cantilever 
(plotted with Matlab) 



Dakota Input File:  
Cantilever LHS Study 
# Dakota INPUT FILE – examples/cantilever/cantilever_sa.in 
strategy,      
    single_method  
    tabular_graphics_data 
    graphics   
method,      
    sampling          
    sample_type lhs         
    seed =52983         
    samples = 100         
variables,         
    uniform_uncertain = 6  
      upper_bounds   48000   45.E+6  700.  1200.  2.2    2.2     
      lower_bounds    32000.   15.E+6  300.    800.   2.0     2.0    
      descriptors  'R' 'E' 'X' 'Y' ’w' ’t' 
interface,         
    direct           
    analysis_driver = 'mod_cantilever' 
responses,         
    num_response_functions = 3         
    response_descriptors = ’area' 'stress' 'displacement'         
    no_gradients   
    no_hessians 



Global Sampling Results for Cantilever 

Dakota tabular data plotted in Matlab (can used Mintab, JMP, Excel, etc.) 

correlation coefficients 
from Dakota console 

output (colored w/ Excel) 

(plotted with Matlab) 



Limitations of SA methods 

 Results are very dependent on the input bounds (example 
below) 

 Grid studies are nice for generating plots and visualization 
surfaces but do not scale well with input dimension 

 Trying to assess global trends with a limited number of 
samples:  can miss local behavior 

response vs. x1 
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Other SA Approaches  
Require Changing Method 

 Dakota Reference Manual guides in specifying keywords 

method,              
sampling          
    sample_type lhs         
    seed =52983         
    samples = 100         

method,              
sampling          
    sample_type lhs         
    seed =52983         
    samples = 500 
    variance_based_decomp       

method,              
    dace oas 
    main_effects 
    seed =52983         
    samples = 500 

method,              
    psuade_moat 
    partitions = 3 
    seed =52983 
    samples = 100 

LHS Sampling  

Variance-based Decomposition 

using LHS Sampling  

Main Effects Analysis using  

Orthogonal Arrays 

Morris One-At-a-Time 



 What? Understand code output variations as input factors vary; main effects and key 
parameter interactions. 

 Why? Identify most important variables and their interactions 

 How? What Dakota methods are relevant?  What results? 

 

 

 

 

 

 

 

 

 

 

 

 

 Also see Dakota Usage Guidelines in User’s Manual 

Category Dakota method names u
n

iv
a

ri
a

te
 

tr
e
n

d
s

 

c
o

rr
e

la
ti

o
n

s
 

m
o

d
if

ie
d

 

m
e

a
n

, 
s

.d
. 

m
a

in
 e

ff
e

c
ts

 

S
o

b
o

l 
in

d
s

. 

im
p

o
rt

a
n

c
e

 

fa
c

to
rs

 /
 

lo
c

a
l 
s

e
n

s
is

 

Parameter 

studies 

centered, vector, list P 

grid D P 

Sampling sampling, dace lhs, dace random, fsu_quasi_mc, 

fsu_cvt 
  with variance_based_decomp... 

P D 

D 

DACE (DOE-like) dace {oas, oa_lhs, box_behnken,  
central_composite} 

D D 

MOAT psuade_moat D 

PCE, SC polynomial_chaos, stoch_collocation D D 

Mean value local_reliability D 

Dakota Sensitivity  
Analysis Summary 

multi- 

purpose! 

D: Dakota 

P: Post- 

     processing 

(3rd party tools) 



Sensitivity Analysis References 

 Saltelli A., Ratto M., Andres T., Campolongo, F., et al., Global Sensitivity Analysis: 
The Primer, Wiley, 2008. 

 J. C. Helton and F. J. Davis. Sampling-based methods for uncertainty and sensitivity 
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Albuquerque, NM, 2000. 

 Sacks, J., Welch, W.J., Mitchell, T.J., and Wynn, H.P. Design and analysis of 
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Bayesian approach. J Royal Stat Soc B 2004; 66:751–769. 

 

 Dakota User’s Manual 

 Parameter Study Capabilities 

 Design of Experiments Capabilities/Sensitivity Analysis 

 Uncertainty Quantification Capabilities (for MC/LHS sampling) 

 Corresponding Reference Manual sections 



Dakota Uncertainty Quantification (UQ) 

 UQ goals and examples 

 Select Dakota examples for UQ: 
 Monte Carlo sampling 

 Local and global reliability 

 Polynomial chaos expansions / stochastic collocation 

 Mixed aleatory-epistemic approaches 

 Probabilistic design 

 



 What? Determine variability, distributions, statistics of code outputs, 
given uncertainty in input factors 

 Why? Assess likelihood of typical or extreme outcomes.  Given input 
uncertainty… 

 Determine mean or median performance of a system 

 Assess variability in model response 

 Find probability of reaching failure/success criteria (reliability metrics) 

 Assess range/intervals of possible outcomes 

 Assess how close uncertainty-endowed code predictions are to 

 Experimental data  
(validation, is model sufficient for the intended application?) 

 Performance expectations or limits  
(quantification of margins and uncertainties) 

Why Perform  
Uncertainty Quantification? 



Many Potential Uncertainties in  
Simulation and Validation 

 physics/science parameters 

 statistical variation,  
inherent randomness 

 model form / accuracy 

 material properties 

 manufacturing quality 

 operating environment,  
interference 

 initial, boundary conditions; forcing 

 geometry / structure / connectivity 

 experimental error (measurement error, measurement bias) 

 numerical accuracy (mesh, solvers); approximation error 

 human reliability, subjective judgment, linguistic imprecision 
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Forward Parametric 
Uncertainty Quantification 

Input Variables u 
(physics parameters,  

geometry,  initial and  

boundary conditions) 

Computational 

Model 

Variable  

Performance 

Measures f(u) 

• Identify and characterize uncertain variables (may not be normal, uniform) 

• Forward propagate: quantify the effect that (potentially correlated) uncertain 
(nondeterministic) input variables have on model output: 

Uncertainties on outputs 

 Means, standard deviations 

 Probabilities 

 Reliabilities 

 PDF, CDF 

 Intervals 

 Belief, plausibility 

Uncertainties on inputs 

• Parameterized distributions: 
normal, uniform, gumbel, etc. 

• Means, standard deviations 

• PDF, CDF from data 

• Intervals 

• Belief structures 

 

[                            ] 

[                            ] 

[                            ] 

[                            ] 

Intervals 



Example: 
Thermal Uncertainty Quantification 

 Device subject to heating (experiment or 
computational simulation) 

 Uncertainty in composition/ environment 
(thermal conductivity, density, boundary), 
parameterized by  
u1, …, uN 

 Response temperature f(u)=T(u1, …, uN)  
calculated by heat transfer code 

Given distributions of u1,…,uN, UQ 
methods calculate statistical info on 
outputs: 

• Mean(T), StdDev(T),  
Probability(T ≥ Tcritical) 

• Probability distribution of 
temperatures 

• Correlations (trends) and 
sensitivity of temperature 
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Example: Uncertainty in Boiling Rate in  
Nuclear Reactor Core 

Method 

ME_nnz ME_meannz ME_max 

Mean Std 

Dev 

Mean Std 

Dev 

Mean Std 

Dev 

LHS (40) 651.225 297.039 127.836 27.723 361.204 55.862 

LHS (400) 647.33 286.146 127.796 25.779 361.581 51.874 

LHS (4000) 688.261 292.687 129.175 25.450 364.317 50.884 

PCE (Θ(2)) 687.875 288.140 129.151 25.7015 364.366 50.315 

PCE (Θ (3)) 688.083 292.974 129.231 25.3989 364.310 50.869 

PCE (Θ (4)) 688.099 292.808 129.213 25.4491 364.313 50.872 

anisotropic uncertainty 

distribution in boiling rate 

throughout  quarter core model 
normally distributed inputs need not give 

rise to normal outputs… 

mean and standard deviation of key metrics 



Three Core Dakota UQ Methods 

 Sampling (Monte Carlo, Latin 
hypercube): robust, easy to understand, 
slow to converge / resolve statistics 

 Reliability: good at calculating probability 
of a particular behavior or failure / tail 
statistics; efficient, some methods are 
only local 

 Stochastic Expansions (PCE/SC global 
approximations): efficient tailored 
surrogates, statistics often derived 
analytically, far more efficient than 
sampling for reasonably smooth 
functions 

G(u) 

Region of u 

values where  

T ≥ Tcritical 



• sample mean 

 

 

• sample variance 

 

 

 

• full PDF(probabilities) 

Black-box UQ Workhorse:  
Random Sampling Methods 

Given distributions of u1,…,uN, sampling-based methods calculate 

sample statistics, e.g., on temperature T(u1,…,uN): 
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u2 

u3 

• Monte Carlo sampling,  Quasi-Monte Carlo 

• Centroidal Voroni Tessalation (CVT) 

• Latin hypercube (stratified) sampling: better 

convergence; stability across replicates 

Robust, but slow convergence: O(N-1/2),  

independent of dimension (in theory) 





N

i

iuT
N

T
1

)(
1

 



N

i

i TuT
N

T
1

2
)(

1
2



Example:  
Cantilever Beam UQ with Sampling 

 Dakota study with LHS  

 Determine mean system response, variability, margin to failure given 
 Yield stress   R ~ Normal(40000, 2000) 

 Young’s modulus E ~ Normal(2.9e7, 1.45e6) 

 Horizontal load  X ~ Normal(500, 100) 

 Vertical load   Y ~ Normal(1000, 100) 

 (Dakota supports a wide range of distribution types) 

 Hold width and thickness at 2.5 

 Compute with respect to thresholds with  
probability_levels or response_levels 

 What is the probability(stress < 20000)? 



method,  

      sampling  

        sample_type lhs  

        samples = 10000  seed = 12347 

        num_probability_levels = 0 17 17      

        probability_levels = 

        .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999 

         .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 .85 .9 .95 .99 .999 

        cumulative distribution  

 

variables,  

      continuous_design = 2  

         initial_point 2.5 2.5  

         upper_bounds 10.0 10.0  

         lower_bounds 1.0 1.0  

         descriptors ’w' ‘t'  

      normal_uncertain = 4  

         means = 40000. 29.E+6 500. 1000.  

         std_deviations = 2000. 1.45E+6 100. 100.  

         descriptors = 'R' 'E' 'X' 'Y'  

 

responses,  

      num_response_functions = 3  

      descriptors = 'area' 'stress' 'displacement' 

      no_gradients  

      no_hessians  

Dakota Input:  
LHS Sampling for Cantilever Beam 



Dakota Output: 
LHS Sampling for Cantilever Beam 

 Moments and confidence intervals 

 

 

 

 

 

 

 

 CDF (and PDF) data  

 Level mappings for each response function: 

Cumulative Distribution Function (CDF) for g_stress: 

     Response Level  Probability Level  Reliability Index  General Rel Index 

     --------------  -----------------  -----------------  ----------------- 

   2.4921421856e+02   1.0000000000e-03 

   4.1489075797e+03   1.0000000000e-02 

   7.9708753041e+03   5.0000000000e-02 

   1.0090342657e+04   1.0000000000e-01 

   1.1589780322e+04   1.5000000000e-01 

   1.2731567123e+04   2.0000000000e-01 

   1.4564078343e+04   3.0000000000e-01 

Statistics based on 10000 samples: 

 

Moment-based statistics for each response function: 

                            Mean           Std Dev          Skewness          Kurtosis 

          area  6.2500000000e+00  0.0000000000e+00  0.0000000000e+00 -3.0000000000e+00 

        stress  1.7599759864e+04  5.7886440706e+03 -2.2153567379e-02 -2.9903700042e+00 

  displacement  1.7201261575e+00  4.0670385498e-01  1.7796424852e-01 -2.9899089153e+00 

 

95% confidence intervals for each response function: 

                    LowerCI_Mean      UpperCI_Mean    LowerCI_StdDev    UpperCI_StdDev 

          area  6.2500000000e+00  6.2500000000e+00  0.0000000000e+00  0.0000000000e+00 

        stress  1.7486290789e+04  1.7713228938e+04  5.7095204696e+03  5.8700072185e+03 

  displacement  1.7121539434e+00  1.7280983716e+00  4.0114471657e-01  4.1242034152e-01 

CDF plotted 

in Matlab 



Challenge: Calculating  
Potentially Small Probability of Failure 

 Given uncertainty in materials, geometry, and environment, how 
to determine likelihood of failure: Probability(T  ≥ Tcritical)? 

 Perform 10,000 LHS samples and count how many exceed 
threshold;  
(better) perform adaptive importance sampling 

 

 

 

 

 

 

 

 

Mean value: make a linearity (and 

possibly normality) assumption and 

project; great for many parameters 

with efficient derivatives! 

 

 Reliability: directly determine 

 input variables which give rise to 

 failure behaviors by solving an 

 optimization problem for a most 

 probable point  (MPP) of failure 
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Analytic Reliability: MPP Search 

Perform optimization in uncertain variable space to determine Most Probable 
Point (of response or failure occurring). 

Reliability Index Approach (RIA) 

G(u) 

Region of u 

values where  

T ≥ Tcritical 
map Tcritical to a 

probability 



Efficient Global Reliability Analysis 
Using Gaussian Process Surrogate + MMAIS 
 Efficient global optimization (EGO)-like approach to solve optimization problem 

 Expected feasibility function: balance exploration with local search near failure 
boundary to refine the GP 

 Cost competitive with best local MPP search methods, yet better probability of 
failure estimates; addresses nonlinear and multimodal challenges 

Gaussian process model  (level curves) of reliability limit state with 

  10 samples       28 samples 

explore 

exploit 

failure  

region 

safe  

region 



 Intrusive or non-intrusive 

 Wiener-Askey Generalized PCE: optimal basis selection leads to exponential 
convergence of statistics 

 

 

 

 

 

 

 Can also numerically generate basis orthogonal to empirical data (PDF/histogram) 

 

Approximate the response using orthogonal polynomial basis functions defined 

over standard random variables 

 

Generalized Polynomial  
Chaos Expansions (PCE) 



Sample Designs to Form Polynomial Chaos or 
Stochastic Collocation Expansions  

Random sampling: PCE Tensor-product quadrature: PCE/SC 

Smolyak Sparse Grid: PCE/SC Cubature: PCE 

Stroud and extensions (Xiu, Cools): 

optimal multidimensional  

integration rules 

Expectation (sampling): 

– Sample w/in distribution of x  

– Compute expected value of 

product of R and each Yj 

Linear regression  

(“point collocation”): 

T
P

Q
 

S
S

G
 

Tensor product of 1-D integration rules, e.g., 

Gaussian quadrature 



method, 

     local_reliability 

       mpp_search no_approx 

       num_probability_levels = 0 17 17      

       probability_levels = 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       cumulative distribution 

 

responses, 

     descriptors = 'area' 'stress'  

                   'displacement'      

     num_response_functions = 3 

     analytic_gradients 

     no_hessians 

Changes for Reliability, PCE 

method, 

     polynomial_chaos 

       sparse_grid_level = 2 #non_nested 

       sample_type lhs seed = 12347  

       samples = 10000 

       num_probability_levels = 0 17 17      

       probability_levels = 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       .001 .01 .05 .1 .15 .2 .3 .4 .5 .6 .7 .8 

.85 .9 .95 .99 .999 

       cumulative distribution 



Uncertainty Quantification Research in Dakota: 
New algorithms bridge robustness/efficiency gap 

Production New Under dev. Planned Collabs. 

Sampling Latin Hypercube, 

Monte Carlo 

Importance, 

Incremental 

Bootstrap, 

Jackknife 

FSU 

Reliability Local: Mean Value, 

First-order & 

second-order 

reliability methods 

(FORM, SORM) 

Global: Efficient 

global reliability 

analysis (EGRA) 

gradient-

enhanced 

recursive 

emulation, 

TGP 

Local:  

Notre Dame, 

Global: 

Vanderbilt 

Stochastic 

expansion 

PCE and SC with 

uniform & 

dimension-adaptive  

p-/h-refinement 

Local adapt 

refinement, 

gradient-

enhanced, 

compr sens 

Discrete rv, 

orthogonal 

least interp. 

Stanford,  

Purdue 

Other 

probabilistic 

Rand fields/ 

stoch proc 

Dimension 

reduction 

Cornell, 

Maryland 

Epistemic Interval-valued/ 

Second-order prob. 

(nested sampling) 

Opt-based interval 

estimation, 

Dempster-Shafer 

Bayesian, 

discrete/ 

model form 

Imprecise 

probability  

LANL,  

UT Austin 

Metrics & 

Global SA 

Importance factors, 

Partial correlations 

Main effects, 

Variance-based 

decomposition 

Stepwise 

regression 

 

LANL 

Research: Adaptive Refinement, Gradient Enhancement 

Adv. Deployment  
 

 

Fills Gaps 



Aleatory/Epistemic UQ:  
Nested (“Second-order” )Approaches 
 Propagate over epistemic and aleatory uncertainty, e.g.,  

UQ with bounds on the mean of a normal distribution (hyper-parameters) 

 Typical in regulatory analyses (e.g., NRC, WIPP) 

 Outer loop: epistemic (interval) variables, inner loop UQ over aleatory (probability) 
variables; potentially costly, not conservative 

 If treating epistemic as uniform, do not analyze probabilistically! 
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Potential flow Vortex lattice 

Smagorinsky-LES Germano-LES 

DNS 

SA-RANS KE-RANS-NBC KE-RANS-DBC 

 

Model Form UQ in  
Fluid/Structure Interactions 

Discrete model choices for same physics: 

 A clear hierarchy of fidelity (low to high) 

 An ensemble of models that are all credible  
(lacking a clear preference structure) 

 With data: Bayesian model selection 

 Without data: epistemic model form  
uncertainty propagation 

 

 

 Combination: 

 

 

 

SA-RANS KE-RANS-NBC KE-RANS-DBC 

Low 

Med 

High 

Horizontal Axis 

Wind Turbine

Vertical Axis 

Wind Turbine

wind turbine applications 



Multifidelity UQ using Stochastic Expansions 

• High-fidelity simulations (e.g., RANS, LES) can be prohibitive for use in UQ 

• Low fidelity “design” codes often exist that are predictive of basic trends 

• Can we leverage LF codes w/i HF UQ in a rigorous manner?  global approxs. of 
model discrepancy 

 
Nlo >> Nhi 

discrepancy 

CACTUS: Code for Axial and 

Crossflow TUrbine Simulation 
Low fidelity 

High fidelity: DG formulation for LES  

Full Computational Fluid Dynamics/ 

Fluid-Structure Interaction 



Dakota UQ: Summary, Relevant Methods 

 What? Understand code output uncertainty / variability 

 Why? Risk-informed decisions with variability, possible outcomes 

 How? What Dakota methods are relevant? 

character method class problem character variants 

aleatory probabilistic sampling nonsmooth, multimodal, 

modest cost, # variables 

Monte Carlo, LHS, 

importance 

local reliability smooth, unimodal, more 

variables, failure modes 

mean value and MPP, 

FORM/SORM,  

global reliability nonsmooth, multimodal, 

low dimensional 

EGRA 

stochastic expansions nonsmooth, multimodal, 

low dimension 

polynomial chaos, 

stochastic collocation 

epistemic interval estimation simple intervals global/local optim, sampling 

evidence theory belief structures global/local evidence 

both nested UQ mixed aleatory / epistemic nested 

 See Dakota Usage Guidelines in User’s Manual 

 Analyze tabular output with third-party statistics packages 



UQ References 

• SAND report 2009-3055.  “Conceptual and Computational Basis for the Quantification of 
Margins and Uncertainty” J. Helton. 

 Helton, JC, JD Johnson, CJ Sallaberry, and CB Storlie.  “Survey of Sampling-Based Methods for 
Uncertainty and Sensitivity Analysis”,  Reliability Engineering and System Safety 91 (2006) pp. 
1175-1209  

 Helton JC, Davis FJ. Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses 
of Complex Systems. Reliability Engineering and System Safety 2003;81(1):23-69. 

 Haldar, A. and S. Mahadevan.  Probability, Reliability, and Statistical Methods in Engineering 
Design (Chapters 7-8).  Wiley, 2000. 

• Eldred, M.S., "Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation 
Methods for Uncertainty Analysis and Design," paper AIAA-2009-2274 in Proceedings of the 
11th AIAA Non-Deterministic Approaches Conference, Palm Springs, CA, May 4-7, 2009. 
 

 Dakota User’s Manual: Uncertainty Quantification Capabilities 

 Dakota Theory Manual 

 Corresponding Reference Manual sections 
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Calibration Background 

 Determine parameter values that maximize agreement between simulation 
response and target response (AKA parameter estimation, parameter 
identification, nonlinear least-squares) 

 

Simulation output Experimental data 
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Calibration 

 Fit model to data 

 E.g., determine material model parameters such that predicted stress-
strain curve matches one generated experimentally 

 Other uses:  determine control settings that enable a system to 
achieve a prescribed performance profile 

 Calibration should be performed in a larger context of verification, 
sensitivity analysis, uncertainty quantification, and validation 

 Calibration is often thought of as “inverse modeling” whereas 
uncertainty propagation (from uncertain inputs to model outputs) is 
called “forward modeling”  

 Calibration is not validation!  Separate data must be used to assess 
whether a calibrated model is valid 

 

 
 



More about Calibration 

 Can formulate the calibration problem as an optimization problem and either use 
global derivative-free or local gradient-based methods to solve it 

 Global Methods:  

 Usually better at finding an overall minimum or set of minima. 

 Do not require the calculation of gradients which can be expensive, especially 
for high-dimensional problems.  

 Global methods often require more function evaluations than local methods. 

 We use DIRECT (DIviding RECTangles), a method that adaptively subdivides the 
space of feasible design points so as to guarantee that iterates are generated in 
the neighborhood of a global minimum in finitely many iterations. 

 With global methods, we hand the SSE to the optimizer as one objective to 
minimize: 
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More about Calibration 

 Nonlinear least squares methods are local methods which exploit the structure of 
the SSE objective 

 Gauss-Newton optimization methods are commonly used:  these are a modification 
of Newton’s method for root-finding. 

 We use NL2SOL algorithm,  which is more robust than many Gauss-Newton solvers 
which experience difficulty when the residuals at the solution are significant. 

 These methods assume the residuals are near zero close to optimum:  we ignore 
the term circled and only use gradients to approximate the Hessian matrix of 
second-derivatives 

 These methods can be very efficient, converging in a few function evaluations 
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Exercise: Calibrate Cantilever  
to Experimental Data 

 Calibrate design variables E, w, t to data from all 3 
responses 

 X, Y, R fixed (state) at nominal values 

 Use NL2SOL or OPT++ Gauss-Newton 

 Key DAKOTA specs: 

 calibration_terms = 3 

 no constraints 

 least_squares_datafile 

 

DATA clean with 

error 

area 7.5 7.772 

stress 2667 2658 

displacement 0.309 0.320 

cantilever_clean.dat 
cantilever_witherror.dat 

• For least-squares methods, application normally 

must return residuals ri(x)= si(x)– di to DAKOTA 

• Here we return the usual area, stress, 

displacement and specify a datafile and DAKOTA 

computes the residuals 



Potential Solution:  
Cantilever Least-Squares 
# Calibrate to area, stress, and displacement data generated with  
# E = 2.85e7, w = 2.5, t = 3.0 
 
method 
  nl2sol 
    convergence_tolerance = 1.0e-6 
 
variables 
  continuous_design = 3 
    upper_bounds  3.1e7 10.0 10.0 
    initial_point 2.9e7 4.0  4.0 
    lower_bounds  2.7e7 1.0  1.0 
    descriptors   'E' 'w' 't' 
  # Fix at nominal 
  continuous_state = 3 
    initial_state 40000 500 1000 
    descriptors 'R' 'X' 'Y' 
 
interface 
  direct 
    analysis_driver = 'mod_cantilever' 
 
responses 
  calibration_terms = 3 
#    calibration_data_file = 'dakota_cantilever_clean.dat' 
    calibration_data_file = 'dakota_cantilever_witherror.dat' 
    descriptors = 'area' 'stress' 'displacement' 
  analytic_gradients 
  no_hessians 

CIs with error: 
E: [ 1.992e+07, 4.190e+07 ] 
w: [ 1.962e+00, 3.918e+00 ] 
t: [ 1.954e+00, 3.309e+00 ] 

CIs without error: 
E: [ 2.850e+07, 2.850e+07 ] 
w: [ 2.500e+00, 2.500e+00 ] 
t: [ 3.000e+00, 3.000e+00 ] 

Confidence Intervals 

approximated by 

calculating the variance  

of the parameter vector 

as diagonal elements of:  

  12 )(ˆ JJ T
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Gradient-Based 

Local (Smooth 

Response) 

nl2sol x x 

nlssol_sqp, optpp_g_newton x x x 

Gradient-Based  

Global (Smooth 

Response) 

hybrid strategy, multi_start strategy 

x x x 

Derivative-Free 

Global 

(Nonsmooth 

Response) 

efficient_global, surrogate_based_global 

x x x 

Quick Guide for Calibration Method Selection 

See Usage Guidelines in DAKOTA User’s Manual. 

Also, can apply any optimizer when doing 

derivative-free local or global calibration. 



Bayesian Methods 

 What is Bayesian analysis? 

 How is it used in calibration? 

 Why is it hard? 

 What is the state-of-the-art?  

 What calibration capabilities do we have in DAKOTA? 
  



Bayesian analysis allows us to formally combine: 

Earlier 

understanding of 

a phenomenon 

Currently 

measured data 

Updated degree of belief 

We want to make a formal statistical inference about the 

probability distribution underlying a random phenomenon 

Bayesian Analysis 



Prior probability Likelihood 

Posterior probability:   

Updated belief about E  

given the occurrence of  

a related event A 

𝑷 𝑬𝒊  𝑨 =
𝑷 𝑨 𝑬𝒊 𝑷(𝑬𝒊)

 𝑷 𝑨 𝑬𝒋 𝑷(𝑬𝒋)𝒋

 

𝑷 𝑬  𝑨 =
𝑷 𝑨 𝑬 𝑷(𝑬)

𝑷(𝑨)
 

Bayes’ Theorem 



θ:  uncertain 

parameter 

y:  observed data 

Posterior  Likelihood x Prior 

Prior PDF 

Likelihood 

function 
Posterior PDF 

Constant 

Bayes’ Theorem for Continuous Variables 



Bayesian Calibration for Simulation Models 

 Experimental data = Model output + error 

 

 

 Error term incorporates measurement errors and modeling errors (can 
get more complex with a bias term) 

 

 

 If we assume error terms are independent, zero mean Gaussian random 
variables with variance 2, the likelihood is:  

 

 

 

 How do we obtain the posterior?  

 It is usually too difficult to calculate analytically 

 We use a technique called Monte Carlo Markov Chain (MCMC) 
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Markov Chain Monte Carlo 

 In MCMC, the idea is to generate a sampling density that is 
approximately equal to the posterior.  We want the sampling density to 
be the stationary distribution of a Markov chain.   

 Metropolis-Hastings is a commonly used algorithm 

 It has the idea of a “proposal density” which is used for generating Xi+1 

in the sequence, conditional on Xi.  

 Implementation issues:  How long do you run the chain, how do you 
know when it is converged, how long is the burn-in period, etc.? 

 Acceptance rate is very important. Need to tune the proposal density to 
get an “optimal” acceptance rate, 45-50% for 1-D problems, 23-26% for 
high dimensional problems 

 COMPUTATIONALLY VERY EXPENSIVE 

 



Surrogate Models 

 Since MCMC requires tens of thousands of function evaluations, it is 
necessary to have a fast-running surrogate model of the simulation 

 Dakota has the capability for using the following surrogates in the 
Bayesian calibration:  

 Gaussian Processes 

 Polynomial Chaos Expansions 

 Stochastic Collocation 

 Steps for a Bayesian analysis:  

 Take initial set of samples from simulation  
 Use LHS or Sparse Grid 

 Develop surrogate approximation of the simulation 

 Define priors on the input parameters (uniform currently) 

 Perform Bayesian analysis using MCMC 

 Generate and analyze posterior distributions 

 

 



Why is Bayesian Calibration difficult? 

 In general, parameter estimation / inverse problems are challenging:  

 Observations contain noise 

 Model is imperfect 

 Many combinations of parameter values yield comparable fits 

 Model is expensive 

 Bayesian calibration can address all of the above. However, the MCMC 
can give poor results and is hard to diagnose.  The surrogates fits can be 
poor.  These problems are often highly sensitive to priors and the 
likelihood formulation.  

 There are a variety of MCMC approaches.  We currently support:  
 Metropolis-Hastings 

 Delayed Rejection/Adaptive Metropolis (DRAM) 

 Differential Evolution Adaptive Metropolis (DREAM) 

 



Status of Bayesian Calibration  
Methods in DAKOTA 

 QUESO is a library of UQ methods developed at the UT 
PECOS center.    
 We currently can perform Bayesian calibration of model parameters with a 

simulation directly (no emulator), with a Gaussian process emulator, or with 
a polynomial chaos or stochastic collocation emulator.    

 The user is allowed to specify scaling for the proposal covariance.   

 We can input data from a file to build a GP emulator.  We have looked at 
building the GP based on initial LHS points plus points from multi-start NLLS. 
This appears to help significantly, since it increases points in high likelihood 
regions. 

 Four variations of DRAM for the MCMC chain generation:  metropolis-hasting 
or adaptive metropolis, delayed rejection or no delayed rejection.  Recently 
added Prudencio’s multi-level MCMC algorithm. 

 To do:  
 Allow for parallel chains, including Prudencio’s multi-level algorithm 

 Extend the capability to handle more complicated covariances for observational error. 

 

 



Status of Bayesian Calibration  
Methods in DAKOTA 

 DREAM.   Initial implementation in Dakota (as of June, 2013).  Allows for 
multiple chains.  Allows use of the same set of surrogates.  

 GPMSA.  GPMSA (Gaussian Process Models for Simulation Analysis) is a 
code developed by Brian Williams, Jim Gattiker, Dave Higdon, et al. at 
LANL.    

 Original LANL code is in Matlab.   

 GPMSA was re-implemented in the QUESO framework.  We have an 
initial wrapper to it in Dakota, but much of it is hardcoded, not 
ready for general applications yet.  

 Need a way to handle functional data.  

 Framework:  

 We do have the capability to read in configuration variables (X) 

 We can incorporate one estimate of sigma for all experiments, or a 
particular sigma per each experiment 

 We do not handle or formulate a discrepancy term at this point.  
 



DAKOTA Bayesian Example 
DAKOTA INPUT FILE - dakota_bayes.in 

method,       

       bayes_calibration queso,      

               emulator 

 gp      emulator_samples = 50       

# pce        sparse_grid_level = 3            

 samples = 5000 seed = 348               
 rejection delayed           

 metropolis adaptive            

 proposal_covariance_scale = 0.01 

#             calibrate_sigma 

 

variables,       
 continuous_design = 2          

 lower_bounds = 0. 0.           

 upper_bounds = 3. 3.          

 

interface,        
 system             

 analysis_driver = 'text_book‘ 

responses,  

       calibration_terms = 1 

        calibration_data_file = 'test10.txt‘ 

        freeform           

         num_experiments = 1 

         num_replicates = 10 

         num_std_deviations = 1  

           no_gradients  

           no_hessians 

 

Data File:  test10.txt 
11.83039   1.0 

11.94504   1.0 

11.70863   1.0 

12.19501   5.0  

11.41225   1.0 

10.86503   1.0 

11.70797   1.0 

11.54544   1.0  

10.61684   1.0 

10.94383   1.0 

 



DAKOTA Example:  Greenland Ice Model 

Basal friction mean field 

“Truth” model as observations 

Two of the modes 

based on K-L 

expansions:  

posterior MAP 

estimates of the 

modes  



Summary 

 Bayesian calibration is conceptually attractive because it is able to give 
probabilistic estimates of model parameters and incorporates current 
information as well as historical data 

 There is a “sweet spot” where it is useful:  you need enough data to 
move the prior 

 The state of the art is performing Bayesian analysis on a relatively small 
number of parameters, possibly using an emulator for expensive models, 
possibly including a discrepancy term 

 There is much research in MCMC methods:  it is easy to get a poor 
sampler and thus poor posterior estimate of parameters 

 Adaptive methods which build up information about the covariance 
between parameters 

 Methods do not perform well when there are parameters which 
don’t affect the output strongly 

 Issue of “where does the uncertainty get pushed” – into the model 
parameters or the error term?  

 


