- software modelling design issues
- driving design by risk mitigation
 - what could lead CSDMS to fail?
 - → how to avoid it?

- Risk 1: getting models into reposity: low threshold to participate but how to ensure long term reliability? in general or specific area of use
 - Pyramid picture from donated to quality assured: workgroup vetting?
 - SourceForge: activity measures, compliancy, # unit test
 - comes with (analytical) tests (also good for checking compiler dependency)
 - multiple icons on the website (code, compl, tests, ...)
 - literature
 - room for comments by users (like comments on hotels)
 - forum

- Risk 2: meta data for "plug & play"
 - OpenMI: get information from components
 - bad experience with visual modelling; "what is ice?"
 - first get models in, solve issues as come along
- Risk 3: CCA toolchain dependencies → complex for development
 - only Ccafeine GUI at end user
 - CCA toolchain only needed for specific request
 - Dan: what if I have a new model? Scott: server account

- Risk 4: transition from listing models to simulation hosting → membership requirement
 - "Build server" for download configurations
 - low/no threshold for membership
 - still code available \rightarrow possible benefit for hardwiring
- Risk 5: computer dependency \rightarrow working offline
 - climate modelling: slight change in way of working
- Risk 6: Misapplication vs guiding users to make "good" connections
 - always possible

- Risk 7: dependency on other developments (OpenMI Java, CCA)
 - waiting for critical bug fixes
- Risk 8: quantity conservation while interpolation
 - work on good re-mapping tools
 - use models on similar grids
 - parallel remapping (look at ESMF,MCT)
- Risk 9: increasing data size
 - porting from PC to HPC
 - grid indexing, scaling "N^2" issues, distributed memory
 - opportunity for additional funding (peta scale)
 - TeraGrid, Grass

- Risk 10: no transition to HPC
 - CCA support HPC; but requires gradual rewriting component by component
- Risk 11: cloud computing (Amazon EC2, Eucalyptus) and GPU
 - migration away from supercomputing
- Risk 12: black box of CSDMS/CCA communication layer
 - Mozilla: tried introducing COM object model (slow) then classes (concurrency problems) → firefox
 - ESRI: modular, object oriented, black box
 - request different degrees of diagnostic output
 - transparent code, e.g. option to easily write netcdf output

- Working top-down: wrap whole model and split only as needed
- Prevent doubling code
- Swappability: test against each other's code helps finding bugs
- Target audience: not point-and-click, but fairly experienced modellers
- Request for something like "support@csdms.org"

Prioritize models

- overview of processes
- identify components ("1d flow", "2d flow", "turb. closure")

Implementation path for contributor

- IRF
- thinking about HPC (SC'09)

Anticipated needs

- coding camps
- stick figures in manual

Toolkits (either as lib within components; or as separate component)

- e.g. terrain tools (slope, aspect, curvature)
- HPC supported
- from framework for coupling models to one supporting <u>construction</u> of models
- drainiage area / watershed tools
- soil heterogeneity \rightarrow process tools / data tools
- collect feedback using wiki on good open source toolkits out there; start with recent book (ref. Scott)
- process tools
- terrain tools
- hydraulics tools
- basin tools

